1,105 research outputs found
Reactivity of hydrated hydroxide anion cluster OH(HO) with H and Rb: an ab initio study
We present a theoretical investigation of the hydrated hydroxide anion
clusters OH(HO) and of the collisional complexes
H-OH(HO) and Rb-OH(HO) (with n). The MP2
and CCSD(T) methods are used to calculate interaction energies, optimized
geometries and vertical detachment energies. Part of the potential energy
surfaces are explored with a focus on the autodetachment region. We point out
the importance of diffuse functions to correctly describe the latter. We use
our results to discuss the different water loss and electronic detachment
channels which are the main reaction routes at room temperature. In particular,
we have considered a direct and an indirect process for the electronic
detachment, depending on whether water loss follows or precedes the detachment
of the excess electron. We use our results to discuss the implication for
astrochemistry and hybrid trap experiments in the context of cold chemistry
Cold reactive and non-reactive collisions of Li and Rb with C: implications for hybrid trap experiments
We present a theoretical investigation of cold reactive and non-reactive
collisions of Li and Rb atoms with C. The potential energy surfaces
for the singlet and triplet states of the Li--C and Rb--C
systems have been obtained using the CASSCF/ic-MRCI+Q approach with extended
basis sets. The potential energy surfaces are then used to investigate the
associative detachment reaction and to calculate rotationally inelastic cross
sections by means of the close-coupling method. The effect of the core
correlation on the potential energy surfaces is discussed and we estimate the
error on the collisional cross sections induced by freezing the orbitals
of the carbon atoms. The results are compared to those obtained for the
Rb-OH system and the applications for hybrid trap experiments are
explored. Furthermore, we discuss the possibility to perform Doppler
thermometry on the C anion and investigate the collision process
involving excited states. The implications for sympathetic cooling experiments
are also discussed
Microscopical speciation analysis with laser microprobe mass spectrometry and static secondary ion mass spectrometry
Simulation of the elementary evolution operator with the motional states of an ion in an anharmonic trap
Following a recent proposal of L. Wang and D. Babikov, J. Chem. Phys. 137,
064301 (2012), we theoretically illustrate the possibility of using the
motional states of a ion trapped in a slightly anharmonic potential to
simulate the single-particle time-dependent Schr\"odinger equation. The
simulated wave packet is discretized on a spatial grid and the grid points are
mapped on the ion motional states which define the qubit network. The
localization probability at each grid point is obtained from the population in
the corresponding motional state. The quantum gate is the elementary evolution
operator corresponding to the time-dependent Schr\"odinger equation of the
simulated system. The corresponding matrix can be estimated by any numerical
algorithm. The radio-frequency field able to drive this unitary transformation
among the qubit states of the ion is obtained by multi-target optimal control
theory. The ion is assumed to be cooled in the ground motional state and the
preliminary step consists in initializing the qubits with the amplitudes of the
initial simulated wave packet. The time evolution of the localization
probability at the grids points is then obtained by successive applications of
the gate and reading out the motional state population. The gate field is
always identical for a given simulated potential, only the field preparing the
initial wave packet has to be optimized for different simulations. We check the
stability of the simulation against decoherence due to fluctuating electric
fields in the trap electrodes by applying dissipative Lindblad dynamics.Comment: 31 pages, 8 figures. Revised version. New title, new figure and new
reference
Control of molecular dynamics with zero-area fields: Application to molecular orientation and photofragmentation
The constraint of time-integrated zero-area on the laser field is a
fundamental, both theoretical and experimental requirement in the control of
molecular dynamics. By using techniques of local and optimal control theory, we
show how to enforce this constraint on two benchmark control problems, namely
molecular orientation and photofragmentation. The origin and the physical
implications on the dynamics of this zero-area control field are discussed.Comment: 19 pages, 7 figure
Ab initio calculation of H + He charge transfer cross sections for plasma physics
The charge transfer in low energy (0.25 to 150 eV/amu) H() + He
collisions is investigated using a quasi-molecular approach for the as
well as the first two singlet states. The diabatic potential energy
curves of the HeH molecular ion are obtained from the adiabatic potential
energy curves and the non-adiabatic radial coupling matrix elements using a
two-by-two diabatization method, and a time-dependent wave-packet approach is
used to calculate the state-to-state cross sections. We find a strong
dependence of the charge transfer cross section in the principal and orbital
quantum numbers and of the initial or final state. We estimate the
effect of the non-adiabatic rotational couplings, which is found to be
important even at energies below 1 eV/amu. However, the effect is small on the
total cross sections at energies below 10 eV/amu. We observe that to calculate
charge transfer cross sections in a manifold, it is only necessary to
include states with , and we discuss the limitations of our
approach as the number of states increases.Comment: 14 pages, 10 figure
Semi-quantitative characterisation of binary salt mixtures with static secondary ion mass spectrometry (S-SIMS)
- …
