618 research outputs found

    XMPP API for Web Applications

    Get PDF
    Tato práce se zabývá návrhem a implementací API umožňující tvorbu XMPP aplikací v ECMAScriptu. Její součástí je implementace navrženého API formou ukázkového pluginu pro XMPP klienta Jabbim. Součástí práce je též implementace hry Dáma vytvořená v ECMAScriptu s využitím navrženého API. Na závěr jsou představena možná rozšíření API v budoucnosti.This thesis deals with design and implementation of an API, that allows creating XMPP applications using ECMAScript. Thesis includes implementation of API as a plugin for Jabbim XMPP client. Part of the thesis is an ECMAScript implementation of board game Draughts using designed API. Finally possibilities of future extensions are discussed.

    Effect of Niacin Monotherapy on High Density Lipoprotein Composition and Function

    Get PDF
    BACKGROUND: Niacin has modest but overall favorable effects on plasma lipids by increasing high density lipoprotein cholesterol (HDL-C) and lowering triglycerides. Clinical trials, however, evaluating niacin therapy for prevention of cardiovascular outcomes have returned mixed results. Recent evidence suggests that the HDL proteome may be a better indicator of HDL\u27s cardioprotective function than HDL-C. The objective of this study was to evaluate the effect of niacin monotherapy on HDL protein composition and function. METHODS: A 20-week investigational study was performed with 11 participants receiving extended-release niacin (target dose = 2 g/day) for 16-weeks followed by a 4-week washout period. HDL was isolated from participants at weeks: 0, 16, and 20. The HDL proteome was analyzed at each time point by mass spectrometry and relative protein quantification was performed by label-free precursor ion intensity measurement. RESULTS: In this cohort, niacin therapy had typical effects on routine clinical lipids (HDL-C + 16%, q \u3c 0.01; LDL-C - 20%, q \u3c 0.01; and triglyceride - 15%, q = 0.1). HDL proteomics revealed significant effects of niacin on 5 proteins: serum amyloid A (SAA), angiotensinogen (AGT), apolipoprotein A-II (APOA2), clusterin (CLUS), and apolipoprotein L1 (APOL1). SAA was the most prominently affected protein, increasing 3-fold in response to niacin (q = 0.008). Cholesterol efflux capacity was not significantly affected by niacin compared to baseline, however, stopping niacin resulted in a 9% increase in efflux (q \u3c 0.05). Niacin did not impact HDL\u27s ability to influence endothelial function. CONCLUSION: Extended-release niacin therapy, in the absence of other lipid-modifying medications, can increase HDL-associated SAA, an acute phase protein associated with HDL dysfunction

    Multiple-Reaction Monitoring–Mass Spectrometric Assays Can Accurately Measure the Relative Protein Abundance in Complex Mixtures

    Full text link
    Abstract BACKGROUND Mass spectrometric assays could potentially replace protein immunoassays in many applications. Previous studies have demonstrated the utility of liquid chromatography–multiple-reaction monitoring–mass spectrometry (LC-MRM/MS) for the quantification of proteins in biological samples, and many examples of the accuracy of these approaches to quantify supplemented analytes have been reported. However, a direct comparison of multiplexed assays that use LC-MRM/MS with established immunoassays to measure endogenous proteins has not been reported. METHODS We purified HDL from the plasma of 30 human donors and used label-free shotgun proteomics approaches to analyze each sample. We then developed 2 different isotope-dilution LC-MRM/MS 6-plex assays (for apoliporoteins A-I, C-II, C-III, E, B, and J): 1 assay used stable isotope-labeled peptides and the other used stable isotope-labeled apolipoprotein A-I (an abundant HDL protein) as an internal standard to control for matrix effects and mass spectrometer performance. The shotgun and LC-MRM/MS assays were then compared with commercially available immunoassays for each of the 6 analytes. RESULTS Relative quantification by shotgun proteomics approaches correlated poorly with the 6 protein immunoassays. In contrast, the isotope dilution LC-MRM/MS approaches showed correlations with immunoassays of r = 0.61–0.96. The LC-MRM/MS approaches had acceptable reproducibility (&amp;lt;13% CV) and linearity (r ≥0.99). Strikingly, a single protein internal standard applied to all proteins performed as well as multiple protein-specific peptide internal standards. CONCLUSIONS Because peak area ratios measured in multiplexed LC-MRM/MS assays correlate well with immunochemical measurements and have acceptable operating characteristics, we propose that LC-MRM/MS could be used to replace immunoassays in a variety of settings. </jats:sec

    Flipped C-Terminal Ends of apoA1 Promote ABCA1-Dependent Cholesterol Efflux by Small HDLs

    Get PDF
    Background: Cholesterol efflux capacity (CEC) predicts cardiovascular disease independently of high-density lipoprotein (HDL) cholesterol levels. Isolated small HDL particles are potent promoters of macrophage CEC by the ABCA1 (ATP-binding cassette transporter A1) pathway, but the underlying mechanisms are unclear. Methods: We used model system studies of reconstituted HDL and plasma from control and lecithin-cholesterol acyltransferase (LCAT)-deficient subjects to investigate the relationships among the sizes of HDL particles, the structure of apoA1 (apolipoprotein A1) in the different particles, and the CECs of plasma and isolated HDLs. Results: We quantified macrophage and ABCA1 CEC of 4 distinct sizes of reconstituted HDL. CEC increased as particle size decreased. Tandem mass spectrometry analysis of chemically cross-linked peptides and molecular dynamics simulations of apoA1, the major protein of HDL, indicated that the mobility of C-terminus of that protein was markedly higher and flipped off the surface in the smallest particles. To explore the physiological relevance of the model system studies, we isolated HDL from LCAT-deficient subjects, the small HDLs (eg, reconstituted HDLs) of which are discoidal and composed of apoA1, cholesterol, and phospholipid. Despite their very low plasma levels of HDL particles, these subjects had normal CEC. In both the LCAT-deficient subjects and control subjects, the CEC of isolated extra-small HDL (a mixture of extra-small and small HDL by calibrated ion mobility analysis) was 3- to 5-fold greater than that of the larger sizes of isolated HDL. Incubating LCAT-deficient plasma and control plasma with human LCAT converted extra-small and small HDL particles into larger particles, and it markedly inhibited CEC. Conclusions: We present a mechanism for the enhanced CEC of small HDLs. In smaller particles, the C-termini of the 2 antiparallel molecules of apoA1 are "flipped" off the lipid surface of HDL. This extended conformation allows them to engage with ABCA1. In contrast, the C-termini of larger HDLs are unable to interact productively with ABCA1 because they form a helical bundle that strongly adheres to the lipid on the particle. Enhanced CEC, as seen with the smaller particles, predicts decreased cardiovascular disease risk. Thus, extra-small and small HDLs may be key mediators and indicators of the cardioprotective effects of HDL

    Serum Amyloid A Impairs the Antiinflammatory Properties of HDL

    Get PDF
    HDL from healthy humans and lean mice inhibits palmitate-induced adipocyte inflammation; however, the effect of the inflammatory state on the functional properties of HDL on adipocytes is unknown. Here, we found that HDL from mice injected with AgNO3 fails to inhibit palmitate-induced inflammation and reduces cholesterol efflux from 3T3-L1 adipocytes. Moreover, HDL isolated from obese mice with moderate inflammation and humans with systemic lupus erythematosus had similar effects. Since serum amyloid A (SAA) concentrations in HDL increase with inflammation, we investigated whether elevated SAA is a causal factor in HDL dysfunction. HDL from AgNO3-injected mice lacking Saa1.1 and Saa2.1 exhibited a partial restoration of antiinflammatory and cholesterol efflux properties in adipocytes. Conversely, incorporation of SAA into HDL preparations reduced antiinflammatory properties but not to the same extent as HDL from AgNO3-injected mice. SAA-enriched HDL colocalized with cell surface–associated extracellular matrix (ECM) of adipocytes, suggesting impaired access to the plasma membrane. Enzymatic digestion of proteoglycans in the ECM restored the ability of SAA-containing HDL to inhibit palmitate-induced inflammation and cholesterol efflux. Collectively, these findings indicate that inflammation results in a loss of the antiinflammatory properties of HDL on adipocytes, which appears to partially result from the SAA component of HDL binding to cell-surface proteoglycans, thereby preventing access of HDL to the plasma membrane

    APOA2 increases cholesterol efflux capacity to plasma HDL by displacing the C-terminus of resident APOA1

    Get PDF
    Abstract The ability of high-density lipoprotein (HDL) to promote cellular cholesterol efflux is a more robust predictor of cardiovascular disease protection than HDL-cholesterol levels in plasma. Previously, we found that lipidated HDL containing both apolipoprotein A-I (APOA1) and A-II (APOA2) promotes cholesterol efflux via the ATP-binding cassette transporter (ABCA1). In the current study, we directly added purified, lipid-free APOA2 to human plasma and found a dose-dependent increase in whole plasma cholesterol efflux capacity. APOA2 likewise increased the cholesterol efflux capacity of isolated HDL with the maximum effect occurring when equal masses of APOA1 and APOA2 coexisted on the particles. Follow-up experiments with reconstituted HDL corroborated that the presence of both APOA1 and APOA2 were necessary for the increased efflux. Using limited proteolysis and chemical cross-linking mass spectrometry, we found that APOA2 induced a conformational change in the N- and C-terminal helices of APOA1. Using reconstituted HDL with APOA1 deletion mutants, we further showed that APOA2 lost its ability to stimulate ABCA1 efflux to HDL if the C-terminal domain of APOA1 was absent, but retained this ability when the N-terminal domain was absent. Based on these findings, we propose a model in which APOA2 displaces the C-terminal helix of APOA1 from the HDL surface which can then interact with ABCA1—much like it does in lipid-poor APOA1. These findings suggest APOA2 may be a novel therapeutic target given this ability to open a large, high-capacity pool of HDL particles to enhance ABCA1-mediated cholesterol efflux

    Complement in patients receiving maintenance hemodialysis: functional screening and quantitative analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The complement system is vital for innate immunity and is implicated in the pathogenesis of inflammatory diseases and the mechanism of host defense. Complement deficiencies occasionally cause life-threatening diseases. In hemodialysis (HD) patients, profiles on complement functional activity and deficiency are still obscure. The objectives of the present study were to measure the functional complement activities of the classical pathway (CP), lectin pathway (LP) and alternative pathway (AP) using a novel method and consequently to elucidate the rates of deficiencies among HD patients.</p> <p>Methods</p> <p>In the present study, 244 HD patients at one dialysis center and 204 healthy controls were enrolled. Functional complement activities were measured simultaneously using the Wielisa<sup>®</sup>-kit. The combination of the results of these three pathway activities allows us to speculate which candidate complement is deficient; subsequently, the deficient complement was determined.</p> <p>Results</p> <p>All three functional complement activities were significantly higher in the HD patients than in the control group (P < 0.01 for all cases). After identifying candidates in both groups with complement deficiencies using the Wielisa<sup>®</sup>-kit, 16 sera (8.8%) with mannose-binding lectin (MBL) deficiency, 1 serum (0.4%) with C4 deficiency, 1 serum (0.4%) with C9 deficiency, and 1 serum (0.4%) with B deficiency were observed in the HD group, and 18 sera (8.8%) with MBL deficiency and 1 serum (0.5%) with B deficiency were observed in the control group. There were no significant differences in the 5-year mortality rate between each complement-deficient group and the complement-sufficient group among the HD patients.</p> <p>Conclusion</p> <p>This is the first report that profiles complement deficiencies by simultaneous measurement of functional activities of the three complement pathways in HD patients. Hemodialysis patients frequently suffer from infections or malignancies, but functional complement deficiencies do not confer additional risk of mortality.</p
    corecore