2,440 research outputs found

    X-ray fluorescence spectroscopy from ions at charged vapor/water interfaces

    Full text link
    X-ray fluorescence spectra from monovalent ions (Cs+) that accumulate from dilute solutions to form an ion-rich layer near a charged Langmuir monolayer are presented. For the salt solution without the monolayer, the fluorescence signals below the critical angle are significantly lower than the detection sensitivity and only above the critical angle signals from the bulk are observed. In the presence of a monolayer that provides surface charges, strong fluorescence signals below the critical angle are observed. Ion density accumulated at the interface are determined from the fluorescence. The fluorescent spectra collected as a function of incident x-ray energy near the LIII edge yield the extended absorption spectra from the ions, and are compared to recent independent results. The fluorescence data from divalent Ba2+ with and without monolayer are also presented

    Ageing in granular aluminium insulating thin films

    Full text link
    We present a new set of electrical field effect measurements on granular aluminium insulating thin films. We have explored how the conductance relaxations induced by gate voltage changes depend on the age of the system, namely the time elapsed since its quench at low temperature. A clear age dependence of the relaxations is seen, qualitatively similar to ageing effects seen in other well studied glassy systems such as spin glasses or polymers. We explain how our results differ from the previous ones obtained with different protocols in indium oxide and granular aluminium thin films. Our experimental findings bring new information on the dynamics of the system and put new constraints on the theoretical models that may explain slow conductance relaxations in disordered insulators.Comment: 4 pages, 13th Transport in interacting disordered systems (TIDS13) conference, 31.08.2009 - 05.09.2009, Rackeve, Hungar

    History-dependent relaxation and the energy scale of correlation in the Electron-Glass

    Full text link
    We present an experimental study of the energy-relaxation in Anderson-insulating indium-oxide films excited far from equilibrium. In particular, we focus on the effects of history on the relaxation of the excess conductance dG. The natural relaxation law of dG is logarithmic, namely dG=-log(t). This may be observed over more than five decades following, for example, cool-quenching the sample from high temperatures. On the other hand, when the system is excited from a state S_{o} in which it has not fully reached equilibrium to a state S_{n}, the ensuing relaxation law is logarithmic only over time t shorter than the time t_{w} it spent in S_{o}. For times t>t_{w} dG(t) show systematic deviation from the logarithmic dependence. It was previously shown that when the energy imparted to the system in the excitation process is small, this leads to dG=P(t/t_{w}) (simple-aging). Here we test the conjecture that `simple-aging' is related to a symmetry in the relaxation dynamics in S_{o} and S_{n}. This is done by using a new experimental procedure that is more sensitive to deviations in the relaxation dynamics. It is shown that simple-aging may still be obeyed (albeit with a modified P(t/t_{w})) even when the symmetry of relaxation in S_{o} and S_{n} is perturbed by a certain degree. The implications of these findings to the question of aging, and the energy scale associated with correlations are discussed
    corecore