2,560 research outputs found

    Flexible and robust networks

    Full text link
    We consider networks with two types of nodes. The v-nodes, called centers, are hyper- connected and interact one to another via many u-nodes, called satellites. This central- ized architecture, widespread in gene networks, possesses two fundamental properties. Namely, this organization creates feedback loops that are capable to generate practically any prescribed patterning dynamics, chaotic or periodic, or having a number of equilib- rium states. Moreover, this organization is robust with respect to random perturbations of the system.Comment: Journal of Bioinformatics and Computational Biology, in pres

    Maximal switchability of centralized networks

    Full text link
    We consider continuous time Hopfield-like recurrent networks as dynamical models for gene regulation and neural networks. We are interested in networks that contain n high-degree nodes preferably connected to a large number of Ns weakly connected satellites, a property that we call n/Ns-centrality. If the hub dynamics is slow, we obtain that the large time network dynamics is completely defined by the hub dynamics. Moreover, such networks are maximally flexible and switchable, in the sense that they can switch from a globally attractive rest state to any structurally stable dynamics when the response time of a special controller hub is changed. In particular, we show that a decrease of the controller hub response time can lead to a sharp variation in the network attractor structure: we can obtain a set of new local attractors, whose number can increase exponentially with N, the total number of nodes of the nework. These new attractors can be periodic or even chaotic. We provide an algorithm, which allows us to design networks with the desired switching properties, or to learn them from time series, by adjusting the interactions between hubs and satellites. Such switchable networks could be used as models for context dependent adaptation in functional genetics or as models for cognitive functions in neuroscience

    Talking Open Data

    Full text link
    Enticing users into exploring Open Data remains an important challenge for the whole Open Data paradigm. Standard stock interfaces often used by Open Data portals are anything but inspiring even for tech-savvy users, let alone those without an articulated interest in data science. To address a broader range of citizens, we designed an open data search interface supporting natural language interactions via popular platforms like Facebook and Skype. Our data-aware chatbot answers search requests and suggests relevant open datasets, bringing fun factor and a potential of viral dissemination into Open Data exploration. The current system prototype is available for Facebook (https://m.me/OpenDataAssistant) and Skype (https://join.skype.com/bot/6db830ca-b365-44c4-9f4d-d423f728e741) users.Comment: Accepted at ESWC2017 demo trac
    corecore