31 research outputs found

    Rejuvenated brewer's spent grain: EverVita ingredients as game-changers in fibre-enriched bread

    Get PDF
    Brewer's spent grain (BSG) is the main side-stream of brewing. BSG is a potential source for nutritionally enriched cereal products due to its high content of fibre and protein. Two novel ingredients originating from BSG, EverVita FIBRA (EVF) and EverVita PRO (EVP), were incorporated into bread in two addition levels to achieve a 'source of fibre' (3 g/100 g) and a 'high in fibre' (6 g/100 g) nutrition claim for the breads. The impact of those two ingredients on dough and bread quality as well as on nutritional value was investigated and compared to baker's flour (C1) and wholemeal flour (C2) breads. The addition of EVF performed outstandingly well in the bread system achieving high specific volumes (3.72-4.66 mL/g), a soft crumb texture (4.77-9.03 N) and a crumb structure comparable with C1. Furthermore, EVF barely restricted gluten network development and did not influence dough rheology. EVP increased the dough resistance (+150%) compared to C1 which led to a lower specific volume (2.17-4.38 mL/g) and a harder crumb (6.25-36.36 N). However, EVP increased the nutritional value of the breads by increasing protein content (+36%) and protein quality by elevating the amount of indispensable amino acids. Furthermore, a decrease in predicted glycaemic index by 26% was achieved and microbial shelf life was extended by up to 3 days. Although both ingredients originated from the same BSG, their impact on bread characteristics and nutritional value varied. EVF and EVP can be considered as game-changers in the development of bread fortified with BSG, increasing nutritional value, and promoting sustainability

    Rejuvenated brewer's spent grain: the impact of two BSG-derived ingredients on techno-functional and nutritional characteristics of fibre-enriched pasta

    Get PDF
    Brewer's Spent Grain (BSG), rich in fibre and protein is mostly used for animal feed but has great potential to be used as an ingredient for cereal based products. Originated from BSG, the two ingredients EverVita Fibra (EVF) high in fibre; and EverVita Pro (EVP) high in protein, were used to produce fibre-enriched pasta and compared to semolina, wholemeal flour and a commercial fibre-rich pasta. Analysis of gluten network development and pasting properties revealed the formation of a stronger network by the incorporation of EVP resulting in a compact pasta structure which led to a higher pasta firmness and tensile strength and a decrease in predicted glycaemic index compared to the controls. EVF resulted in an inferior product compared to EVP but was comparable to the semolina control. Hence, EVF and EVP have the potential to increase nutritional value of pasta while maintaining or even improving pasta quality and encouraging the recycling of by-streams for food production

    Non-invasive diagnostic tests for Helicobacter pylori infection

    Get PDF
    BACKGROUND: Helicobacter pylori (H pylori) infection has been implicated in a number of malignancies and non-malignant conditions including peptic ulcers, non-ulcer dyspepsia, recurrent peptic ulcer bleeding, unexplained iron deficiency anaemia, idiopathic thrombocytopaenia purpura, and colorectal adenomas. The confirmatory diagnosis of H pylori is by endoscopic biopsy, followed by histopathological examination using haemotoxylin and eosin (H & E) stain or special stains such as Giemsa stain and Warthin-Starry stain. Special stains are more accurate than H & E stain. There is significant uncertainty about the diagnostic accuracy of non-invasive tests for diagnosis of H pylori. OBJECTIVES: To compare the diagnostic accuracy of urea breath test, serology, and stool antigen test, used alone or in combination, for diagnosis of H pylori infection in symptomatic and asymptomatic people, so that eradication therapy for H pylori can be started. SEARCH METHODS: We searched MEDLINE, Embase, the Science Citation Index and the National Institute for Health Research Health Technology Assessment Database on 4 March 2016. We screened references in the included studies to identify additional studies. We also conducted citation searches of relevant studies, most recently on 4 December 2016. We did not restrict studies by language or publication status, or whether data were collected prospectively or retrospectively. SELECTION CRITERIA: We included diagnostic accuracy studies that evaluated at least one of the index tests (urea breath test using isotopes such as13C or14C, serology and stool antigen test) against the reference standard (histopathological examination using H & E stain, special stains or immunohistochemical stain) in people suspected of having H pylori infection. DATA COLLECTION AND ANALYSIS: Two review authors independently screened the references to identify relevant studies and independently extracted data. We assessed the methodological quality of studies using the QUADAS-2 tool. We performed meta-analysis by using the hierarchical summary receiver operating characteristic (HSROC) model to estimate and compare SROC curves. Where appropriate, we used bivariate or univariate logistic regression models to estimate summary sensitivities and specificities. MAIN RESULTS: We included 101 studies involving 11,003 participants, of which 5839 participants (53.1%) had H pylori infection. The prevalence of H pylori infection in the studies ranged from 15.2% to 94.7%, with a median prevalence of 53.7% (interquartile range 42.0% to 66.5%). Most of the studies (57%) included participants with dyspepsia and 53 studies excluded participants who recently had proton pump inhibitors or antibiotics.There was at least an unclear risk of bias or unclear applicability concern for each study.Of the 101 studies, 15 compared the accuracy of two index tests and two studies compared the accuracy of three index tests. Thirty-four studies (4242 participants) evaluated serology; 29 studies (2988 participants) evaluated stool antigen test; 34 studies (3139 participants) evaluated urea breath test-13C; 21 studies (1810 participants) evaluated urea breath test-14C; and two studies (127 participants) evaluated urea breath test but did not report the isotope used. The thresholds used to define test positivity and the staining techniques used for histopathological examination (reference standard) varied between studies. Due to sparse data for each threshold reported, it was not possible to identify the best threshold for each test.Using data from 99 studies in an indirect test comparison, there was statistical evidence of a difference in diagnostic accuracy between urea breath test-13C, urea breath test-14C, serology and stool antigen test (P = 0.024). The diagnostic odds ratios for urea breath test-13C, urea breath test-14C, serology, and stool antigen test were 153 (95% confidence interval (CI) 73.7 to 316), 105 (95% CI 74.0 to 150), 47.4 (95% CI 25.5 to 88.1) and 45.1 (95% CI 24.2 to 84.1). The sensitivity (95% CI) estimated at a fixed specificity of 0.90 (median from studies across the four tests), was 0.94 (95% CI 0.89 to 0.97) for urea breath test-13C, 0.92 (95% CI 0.89 to 0.94) for urea breath test-14C, 0.84 (95% CI 0.74 to 0.91) for serology, and 0.83 (95% CI 0.73 to 0.90) for stool antigen test. This implies that on average, given a specificity of 0.90 and prevalence of 53.7% (median specificity and prevalence in the studies), out of 1000 people tested for H pylori infection, there will be 46 false positives (people without H pylori infection who will be diagnosed as having H pylori infection). In this hypothetical cohort, urea breath test-13C, urea breath test-14C, serology, and stool antigen test will give 30 (95% CI 15 to 58), 42 (95% CI 30 to 58), 86 (95% CI 50 to 140), and 89 (95% CI 52 to 146) false negatives respectively (people with H pylori infection for whom the diagnosis of H pylori will be missed).Direct comparisons were based on few head-to-head studies. The ratios of diagnostic odds ratios (DORs) were 0.68 (95% CI 0.12 to 3.70; P = 0.56) for urea breath test-13C versus serology (seven studies), and 0.88 (95% CI 0.14 to 5.56; P = 0.84) for urea breath test-13C versus stool antigen test (seven studies). The 95% CIs of these estimates overlap with those of the ratios of DORs from the indirect comparison. Data were limited or unavailable for meta-analysis of other direct comparisons. AUTHORS' CONCLUSIONS: In people without a history of gastrectomy and those who have not recently had antibiotics or proton ,pump inhibitors, urea breath tests had high diagnostic accuracy while serology and stool antigen tests were less accurate for diagnosis of Helicobacter pylori infection.This is based on an indirect test comparison (with potential for bias due to confounding), as evidence from direct comparisons was limited or unavailable. The thresholds used for these tests were highly variable and we were unable to identify specific thresholds that might be useful in clinical practice.We need further comparative studies of high methodological quality to obtain more reliable evidence of relative accuracy between the tests. Such studies should be conducted prospectively in a representative spectrum of participants and clearly reported to ensure low risk of bias. Most importantly, studies should prespecify and clearly report thresholds used, and should avoid inappropriate exclusions

    Novel Hybrid Polymeric and Inorganic Structures for Applications in Nanobiotechnology

    No full text
    This cumulative doctoral dissertation deals with the use of diverse polymers in different applications within nanoscience. The synthesis and characterization of several nano and microstructures is also explained, focusing on the later surface modification via the use of different polymers. Polymers are chemical compounds formed by the combination of several repeating structural units (monomers) in a process called polymerization. These structures are assembled following a specific pattern and their subsequent properties are given by the monomers added in the polymerization process. Several uses of polymers have been reported, being their use in the process of engineering novel composite materials for applications within fields like aerospace industry, biotechnology or medicine. The work shown in this thesis aimed to implement novel applications for some of the general polymer uses found in literature and the employment of amphiphilic zwitterionic polymers to test their stability for different biological applications. The dissertation is first focused on the study of three different applications of polymers inside nanotechnology. One of the most common applications of the use of amphiphilic polymers is the coating of inorganic NPs initially synthesized in organic solutions, transferring them into aqueous solutions. The resulting polymer coated NPs count on functional groups on their surface allowing further modifications for new functionalities. This procedure is applied to NPs with different size (ranging from 4 to 29 nm core size) and material (gold and iron oxide). A second application of the polymers is the protection of highly unstable, water and oxygen-sensitive clusters from degradation in aqueous environments. For that purpose gold NPs (Au NPs) of 4 nm were used as template and the clusters were collected between the surface of the NP and the amphiphilic polymer shell. The kinetic activity of the clusters was studied in aqueous environment, obtaining signal in at least the first 24 hours after the coating. As a complementary study inside this dissertation, different amphiphilic zwitterionic polymers were synthesized and optimized for a correct stabilization of NPs in water. The influence of parameters like pH, protein concentration and ionic strength was studied to obtain a complete description of the stability of the different zwitterionic polymer-coated NPs, comparing them to the single charge polymer coated NPs (e.g. fully positive or fully negative). A third application involves the self-assembly of alternating-charge polyelectrolyte layers deposited via adsorption on sacrificial calcium carbonate cores, yielding polymeric hollow microstructures able to be provided with physical and biological properties. Both properties are obtained via the accumulation of iron oxide nanoparticles between the polymer layers and the attachment of specific antibodies vion the outermost polymer layer, giving physical (magnetic) and biological (specific recognition) properties to the whole structure. These microcapsules were utilized to obtain a magnetic immunosensor able to specifically recognize and extract horseradish peroxidase (used as protein model) from a solution

    Novel Hybrid Polymeric and Inorganic Structures for Applications in Nanobiotechnology

    No full text
    This cumulative doctoral dissertation deals with the use of diverse polymers in different applications within nanoscience. The synthesis and characterization of several nano and microstructures is also explained, focusing on the later surface modification via the use of different polymers. Polymers are chemical compounds formed by the combination of several repeating structural units (monomers) in a process called polymerization. These structures are assembled following a specific pattern and their subsequent properties are given by the monomers added in the polymerization process. Several uses of polymers have been reported, being their use in the process of engineering novel composite materials for applications within fields like aerospace industry, biotechnology or medicine. The work shown in this thesis aimed to implement novel applications for some of the general polymer uses found in literature and the employment of amphiphilic zwitterionic polymers to test their stability for different biological applications. The dissertation is first focused on the study of three different applications of polymers inside nanotechnology. One of the most common applications of the use of amphiphilic polymers is the coating of inorganic NPs initially synthesized in organic solutions, transferring them into aqueous solutions. The resulting polymer coated NPs count on functional groups on their surface allowing further modifications for new functionalities. This procedure is applied to NPs with different size (ranging from 4 to 29 nm core size) and material (gold and iron oxide). A second application of the polymers is the protection of highly unstable, water and oxygen-sensitive clusters from degradation in aqueous environments. For that purpose gold NPs (Au NPs) of 4 nm were used as template and the clusters were collected between the surface of the NP and the amphiphilic polymer shell. The kinetic activity of the clusters was studied in aqueous environment, obtaining signal in at least the first 24 hours after the coating. As a complementary study inside this dissertation, different amphiphilic zwitterionic polymers were synthesized and optimized for a correct stabilization of NPs in water. The influence of parameters like pH, protein concentration and ionic strength was studied to obtain a complete description of the stability of the different zwitterionic polymer-coated NPs, comparing them to the single charge polymer coated NPs (e.g. fully positive or fully negative). A third application involves the self-assembly of alternating-charge polyelectrolyte layers deposited via adsorption on sacrificial calcium carbonate cores, yielding polymeric hollow microstructures able to be provided with physical and biological properties. Both properties are obtained via the accumulation of iron oxide nanoparticles between the polymer layers and the attachment of specific antibodies vion the outermost polymer layer, giving physical (magnetic) and biological (specific recognition) properties to the whole structure. These microcapsules were utilized to obtain a magnetic immunosensor able to specifically recognize and extract horseradish peroxidase (used as protein model) from a solution

    Incidence, Epidemiology and Etiology of Injuries, in a Spanish Amateur Football Club

    No full text
    Background: Playing football, both at the amateur and professional level, associates an increased risk of injury. A documented report on injury location, type and incidence, in correlation with sports intensity, professionalism level and age, would be of support for implementing preventing measures and appropriate training programs, to reduce the incidence of football related injury. Objectives: This study aimed to assess the incidence, type and location of injuries during one season, in an amateur football club and design strategies and preventive measures. Patients and Methods: A population of 308 players were studied, aged between 5 and 29 years old (20 subjects over-19, 38 under-19, 38 under-16, 57 under-14, 57 under-12, 44 under-10 and 54 under-8 years old, respectively) distributed over 20 teams. In total, 339 cases of injury occurred. Results: The population injured the most was the under-19 group and the most prevalent type of injuries was muscular (40.7%) and ligament (16.5%). The most common location was the lower limbs (78.6%) and, specifically, the thigh (39.8%). Physical load periods (September and February) were highlighted as the months of highest incidence and the average number of visits per injury was 1.34. A statistically significant relationship between hours of training and injuries was noted. Conclusions: In the literature, there are similar publications, who studied these variables, separately. This work provides us with a certain amount of descriptive results, which may serve as a model for future research projects, performing interventions by coaches and medical services of football clubs, to reduce the injuries incidence, especially in the months of greatest physical load and, therefore, improve the performance. Football is a safe sport to practice, at any age, because injuries, regularly, are not serious and it is highly recommended, given the amount of health benefits obtained

    Rejuvenated Brewer’s Spent Grain: EverVita Ingredients as Game-Changers in Fibre-Enriched Bread

    No full text
    Brewer’s spent grain (BSG) is the main side-stream of brewing. BSG is a potential source for nutritionally enriched cereal products due to its high content of fibre and protein. Two novel ingredients originating from BSG, EverVita FIBRA (EVF) and EverVita PRO (EVP), were incorporated into bread in two addition levels to achieve a ‘source of fibre’ (3 g/100 g) and a ‘high in fibre’ (6 g/100 g) nutrition claim for the breads. The impact of those two ingredients on dough and bread quality as well as on nutritional value was investigated and compared to baker’s flour (C1) and wholemeal flour (C2) breads. The addition of EVF performed outstandingly well in the bread system achieving high specific volumes (3.72–4.66 mL/g), a soft crumb texture (4.77–9.03 N) and a crumb structure comparable with C1. Furthermore, EVF barely restricted gluten network development and did not influence dough rheology. EVP increased the dough resistance (+150%) compared to C1 which led to a lower specific volume (2.17–4.38 mL/g) and a harder crumb (6.25–36.36 N). However, EVP increased the nutritional value of the breads by increasing protein content (+36%) and protein quality by elevating the amount of indispensable amino acids. Furthermore, a decrease in predicted glycaemic index by 26% was achieved and microbial shelf life was extended by up to 3 days. Although both ingredients originated from the same BSG, their impact on bread characteristics and nutritional value varied. EVF and EVP can be considered as game-changers in the development of bread fortified with BSG, increasing nutritional value, and promoting sustainability.</jats:p
    corecore