712 research outputs found
The catalytic role of beta effect in barotropization processes
The vertical structure of freely evolving, continuously stratified,
quasi-geostrophic flow is investigated. We predict the final state
organization, and in particular its vertical structure, using statistical
mechanics and these predictions are tested against numerical simulations. The
key role played by conservation laws in each layer, including the fine-grained
enstrophy, is discussed. In general, the conservation laws, and in particular
that enstrophy is conserved layer-wise, prevent complete barotropization, i.e.,
the tendency to reach the gravest vertical mode. The peculiar role of the
-effect, i.e. of the existence of planetary vorticity gradients, is
discussed. In particular, it is shown that increasing increases the
tendency toward barotropization through turbulent stirring. The effectiveness
of barotropisation may be partly parameterized using the Rhines scale . As this parameter decreases (beta increases) then
barotropization can progress further, because the beta term provides enstrophy
to each layer
Mapping the Energy Cascade in the North Atlantic Ocean: The Coarse-graining Approach
This is the final version of the article. Available from AMS via the DOI in this record.A coarse-graining framework is implemented to analyze nonlinear processes, measure energy transfer rates and map out the energy pathways from simulated global ocean data. Traditional tools to measure the energy cascade from turbulence theory, such as spectral flux or spectral transfer rely on the assumption of statistical homogeneity, or at least a large separation between the scales of motion and the scales of statistical inhomogeneity. The coarse-graining framework allows for probing the fully nonlinear dynamics simultaneously in scale and in space, and is not restricted by those assumptions. This paper describes how the framework can be applied to ocean flows. Energy transfer between scales is not unique due to a gauge freedom. Here, it is argued that a Galilean invariant subfilter scale (SFS) flux is a suitable quantity to properly measure energy scale-transfer in the Ocean. It is shown that the SFS definition can yield answers that are qualitatively different from traditional measures that conflate spatial transport with the scale-transfer of energy. The paper presents geographic maps of the energy scale-transfer that are both local in space and allow quasi-spectral, or scale-by-scale, dynamics to be diagnosed. Utilizing a strongly eddying simulation of flow in the North Atlantic Ocean, it is found that an upscale energy transfer does not hold everywhere. Indeed certain regions, near the Gulf Stream and in the Equatorial Counter Current have a marked downscale transfer. Nevertheless, on average an upscale transfer is a reasonable mean description of the extra-tropical energy scale-transfer over regions of O(10^3) kilometers in size.Financial
support was provided by IGPPS at Los Alamos National Laboratory (LANL)
and NSF grant OCE-1259794. HA was also supported through DOE grants
de-sc0014318, de-na0001944, and the LANL LDRD program through project
number 20150568ER. MH was also supported through the HiLAT project of
the Regional and Global Climate Modeling program of the DOE’s Office of Science,
and GKV was also supported by NERC, the Marie Curie Foundation and
the Royal Society (Wolfson Foundation). This research used resources of the
National Energy Research Scientific Computing Center, a DOE Office of Science
User Facility supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231
The backbone of the climate network
We propose a method to reconstruct and analyze a complex network from data
generated by a spatio-temporal dynamical system, relying on the nonlinear
mutual information of time series analysis and betweenness centrality of
complex network theory. We show, that this approach reveals a rich internal
structure in complex climate networks constructed from reanalysis and model
surface air temperature data. Our novel method uncovers peculiar wave-like
structures of high energy flow, that we relate to global surface ocean
currents. This points to a major role of the oceanic surface circulation in
coupling and stabilizing the global temperature field in the long term mean
(140 years for the model run and 60 years for reanalysis data). We find that
these results cannot be obtained using classical linear methods of multivariate
data analysis, and have ensured their robustness by intensive significance
testing.Comment: 6 pages, 5 figure
Hsc70-induced changes in clathrin-auxilin cage structure suggest a role for clathrin light chains in cage disassembly
The molecular chaperone, Hsc70, together with its co-factor, auxilin, facilitates the ATP-dependent removal of clathrin during clathrin-mediated endocytosis in cells. We have used cryo-electron microscopy to determine the 3D structure of a complex of clathrin, auxilin401-910 and Hsc70 at pH 6 in the presence of ATP, frozen within 20 seconds of adding Hsc70 in order to visualize events that follow the binding of Hsc70 to clathrin and auxilin before clathrin disassembly. In this map, we observe density beneath the vertex of the cage that we attribute to bound Hsc70. This density emerges asymmetrically from the clathrin vertex, suggesting preferential binding by Hsc70 for one of the three possible sites at the vertex. Statistical comparison with a map of whole auxilin and clathrin previously published by us reveals the location of statistically significant differences which implicate involvement of clathrin light chains in structural rearrangements which occur after Hsc70 is recruited. Clathrin disassembly assays using light scattering suggest that loss of clathrin light chains reduces the efficiency with which auxilin facilitates this reaction. These data support a regulatory role for clathrin light chains in clathrin disassembly in addition to their established role in regulating clathrin assembly
Stratospheric sudden warmings in an idealized GCM
PublishedJournal ArticleAn idealized general circulation model (GCM) with an analytically described Newtonian cooling term is employed to study the occurrence rate of sudden stratospheric warmings (SSWs) over a wide range of parameters. In particular, the sensitivity of the SSW occurrence rates to orographic forcing and both relaxation temperature and damping rate is evaluated. The stronger the orographic forcing and the weaker the radiative forcing (in both temperature and damping rate), the higher the SSW frequency. The separate effects of the damping rates at low and high latitudes are somewhat more complex. Generally, lower damping rates result in higher SSW frequency. However, if the low- and high-latitude damping rates are not the same, SSW frequency tends to be most sensitive to a fractional change in the lower of the two damping rates. In addition, the effect of the damping rates on the stratospheric residual circulation is investigated. It is found that higher high-latitude damping rate results in deeper but narrower circulation, whereas higher low-latitude damping rates cause strengthening of the stream function in the tropical midstratosphere to upper stratosphere. Finally, the relation between easily measured and compared climatological fields and the SSW occurrence rate is determined. The average stratospheric polar zonal mean zonal wind shows a strong anticorrelation with the SSW frequency. In the troposphere, there is a high correlation between the meridional temperature gradient and SSW frequency, suggesting that the strength of synoptic activity in the troposphere may be an important influence on SSW occurrence.National Science FoundationSwiss National Science Foundatio
Hetonic quartets in a two-layer quasi-geostrophic flow : V-states and stability
M.A.S. and X.C. were supported by RFBR/CNRS (PRC Grant No. 16-55-150001/1069). M.A.S. was supported also by RFBR (Grant No. 16-05-00121), RSF (Grant No. 14-50-00095, geophysical applications) and MESRF (Grant No. 14.W.03.31.0006, numerical simulation, vortex dynamics).We investigate families of finite core vortex quartets in mutual equilibrium in a two- layer quasi-geostrophic flow. The finite core solutions stem from known solutions for discrete (singular) vortex quartets. Two vortices lie in the top layer and two vortices lie in the bottom layer. Two vortices have a positive potential vorticity anomaly while the two others have negative potential vorticity anomaly. The vortex configurations are therefore related to the baroclinic dipoles known in the literature as hetons. Two main branches of solutions exist depending on the arrangement of the vortices: the translating zigzag-shaped hetonic quartets and the rotating zigzag- shaped hetonic quartets. By addressing their linear stability, we show that while the rotating quartets can be unstable over a large range of the parameter space, most translating quartets are stable. This has implications on the longevity of such vortex equilibria in the oceans.PostprintPeer reviewe
Astrophysical Fluid Dynamics via Direct Statistical Simulation
In this paper we introduce the concept of Direct Statistical Simulation (DSS)
for astrophysical flows. This technique may be appropriate for problems in
astrophysical fluids where the instantaneous dynamics of the flows are of
secondary importance to their statistical properties. We give examples of such
problems including mixing and transport in planets, stars and disks. The method
is described for a general set of evolution equations, before we consider the
specific case of a spectral method optimised for problems on a spherical
surface. The method is illustrated for the simplest non-trivial example of
hydrodynamics and MHD on a rotating spherical surface. We then discuss possible
extensions of the method both in terms of computational methods and the range
of astrophysical problems that are of interest.Comment: 26 pages, 11 figures, added clarifying remarks and references, and
corrected typos. This version is accepted for publication in The
Astrophysical Journa
Generalized Quasilinear Approximation: Application to Zonal Jets
Quasilinear theory is often utilized to approximate the dynamics of fluids exhibiting significant interactions between mean flows and eddies. We present a generalization of quasilinear theory to include dynamic mode interactions on the large scales. This generalized quasilinear (GQL) approximation is achieved by separating the state variables into large and small zonal scales via a spectral filter rather than by a decomposition into a formal mean and fluctuations. Nonlinear interactions involving only small zonal scales are then removed. The approximation is conservative and allows for scattering of energy between small-scale modes via the large scale (through nonlocal spectral interactions). We evaluate GQL for the paradigmatic problems of the driving of large-scale jets on a spherical surface and on the beta plane and show that it is accurate even for a small number of large-scale modes. As GQL is formally linear in the small zonal scales, it allows for the closure of the system and can be utilized in direct statistical simulation schemes that have proved an attractive alternative to direct numerical simulation for many geophysical and astrophysical problems
Generation and Structure of Solitary Rossby Vortices in Rotating Fluids
The formation of zonal flows and vortices in the generalized
Charney-Hasegawa-Mima equation is studied. We focus on the regime when the size
of structures is comparable to or larger than the deformation (Rossby) radius.
Numerical simulations show the formation of anticyclonic vortices in unstable
shear flows and ring-like vortices with quiescent cores and vorticity
concentrated in a ring. Physical mechanisms that lead to these phenomena and
their relevance to turbulence in planetary atmospheres are discussed.Comment: 3 pages in REVTeX, 5 postscript figures separately, submitted to
Phys. Rev.
Recommended from our members
Hemodynamic and metabolic effects of a new pediatric dobutamine formulation in hypoxic newborn pigs
Background: The aim of our study was to measure drug-related changes in hemodynamics and oxygen metabolism in response to different doses of an age-appropriate dobutamine formulation in hypoxic pigs. A secondary aim was to validate superior vena cava flow (SVCF) as a marker of cardiac index (CI) for subsequent clinical trials of this formulation in humans.
Methods: Newborn pigs (n=18) were exposed to 2h-hypoxia (10-15% oxygen) followed by reoxygenation (21-30% oxygen 4h). After 1h-reoxygenation, pigs were randomized to: control group (no treatment), dobutamine infusion at a rate of 10-15μg/kg/min or 15-20μg/kg/min. Dobutamine groups received two dobutamine doses during 30min with a 60min washout period between doses. Cardiovascular profile and oxygen metabolism were monitored. In four animals an ultrasonic perivascular flow probe was placed around superior vena cava to measure SVCF.
Results: Hypoxia significantly decreased CI, systemic-vascular-resistance and mean-arterial-bloodpressure (MABP). Dobutamine doses significantly increased heart-rate, CI and oxygen-delivery without changes in stroke-volume and MABP. Only 10-15μg/kg/min increased oxygen consumption and peripheral tissue oxygenation measured by Near-infrared-spectroscopy. A positive correlation was observed between SVCF and CI.
Conclusion: The new pediatric dobutamine formulation improved hemodynamic status, with dose-specific
differences in metabolic response. SVCF may be a useful surrogate for CI in subsequent clinical trials
- …
