20,216 research outputs found

    Skating on slippery ice

    Get PDF
    The friction of a stationary moving skate on smooth ice is investigated, in particular in relation to the formation of a thin layer of water between skate and ice. It is found that the combination of ploughing and sliding gives a friction force that is rather insensitive for parameters such as velocity and temperature. The weak dependence originates from the pressure adjustment inside the water layer. For instance, high velocities, which would give rise to high friction, also lead to large pressures, which, in turn, decrease the contact zone and so lower the friction. The theory is a combination and completion of two existing but conflicting theories on the formation of the water layer.Comment: 26 pages, 8 figures Posted at SciPos

    Exact Solution for a 1-dimensional model for Reptation

    Full text link
    We discuss the exact solution for the properties of the recently introduced ``necklace'' model for reptation. The solution gives the drift velocity, diffusion constant and renewal time for asymptotically long chains. Its properties are also related to a special case of the Rubinstein-Duke model in one dimension.Comment: 8 Pages RevTeX and 1 PostScript figure include

    On the Executability of Interactive Computation

    Full text link
    The model of interactive Turing machines (ITMs) has been proposed to characterise which stream translations are interactively computable; the model of reactive Turing machines (RTMs) has been proposed to characterise which behaviours are reactively executable. In this article we provide a comparison of the two models. We show, on the one hand, that the behaviour exhibited by ITMs is reactively executable, and, on the other hand, that the stream translations naturally associated with RTMs are interactively computable. We conclude from these results that the theory of reactive executability subsumes the theory of interactive computability. Inspired by the existing model of ITMs with advice, which provides a model of evolving computation, we also consider RTMs with advice and we establish that a facility of advice considerably upgrades the behavioural expressiveness of RTMs: every countable transition system can be simulated by some RTM with advice up to a fine notion of behavioural equivalence.Comment: 15 pages, 0 figure

    A penalty method for PDE-constrained optimization in inverse problems

    Full text link
    Many inverse and parameter estimation problems can be written as PDE-constrained optimization problems. The goal, then, is to infer the parameters, typically coefficients of the PDE, from partial measurements of the solutions of the PDE for several right-hand-sides. Such PDE-constrained problems can be solved by finding a stationary point of the Lagrangian, which entails simultaneously updating the paramaters and the (adjoint) state variables. For large-scale problems, such an all-at-once approach is not feasible as it requires storing all the state variables. In this case one usually resorts to a reduced approach where the constraints are explicitly eliminated (at each iteration) by solving the PDEs. These two approaches, and variations thereof, are the main workhorses for solving PDE-constrained optimization problems arising from inverse problems. In this paper, we present an alternative method that aims to combine the advantages of both approaches. Our method is based on a quadratic penalty formulation of the constrained optimization problem. By eliminating the state variable, we develop an efficient algorithm that has roughly the same computational complexity as the conventional reduced approach while exploiting a larger search space. Numerical results show that this method indeed reduces some of the non-linearity of the problem and is less sensitive the initial iterate

    Tumbling of a rigid rod in a shear flow

    Full text link
    The tumbling of a rigid rod in a shear flow is analyzed in the high viscosity limit. Following Burgers, the Master Equation is derived for the probability distribution of the orientation of the rod. The equation contains one dimensionless number, the Weissenberg number, which is the ratio of the shear rate and the orientational diffusion constant. The equation is solved for the stationary state distribution for arbitrary Weissenberg numbers, in particular for the limit of high Weissenberg numbers. The stationary state gives an interesting flow pattern for the orientation of the rod, showing the interplay between flow due to the driving shear force and diffusion due to the random thermal forces of the fluid. The average tumbling time and tumbling frequency are calculated as a function of the Weissenberg number. A simple cross-over function is proposed which covers the whole regime from small to large Weissenberg numbers.Comment: 22 pages, 9 figure

    A model for the dynamics of extensible semiflexible polymers

    Full text link
    We present a model for semiflexible polymers in Hamiltonian formulation which interpolates between a Rouse chain and worm-like chain. Both models are realized as limits for the parameters. The model parameters can also be chosen to match the experimental force-extension curve for double-stranded DNA. Near the ground state of the Hamiltonian, the eigenvalues for the longitudinal (stretching) and the transversal (bending) modes of a chain with N springs, indexed by p, scale as lambda_lp ~ (p/N)^2 and lambda_tp ~ p^2(p-1)^2/N^4 respectively for small p. We also show that the associated decay times tau_p ~ (N/p)^4 will not be observed if they exceed the orientational time scale tau_r ~ N^3 for an equally-long rigid rod, as the driven decay is then washed out by diffusive motion.Comment: 28 pages, 2 figure

    Conserving Approximations in Time-Dependent Density Functional Theory

    Get PDF
    In the present work we propose a theory for obtaining successively better approximations to the linear response functions of time-dependent density or current-density functional theory. The new technique is based on the variational approach to many-body perturbation theory (MBPT) as developed during the sixties and later expanded by us in the mid nineties. Due to this feature the resulting response functions obey a large number of conservation laws such as particle and momentum conservation and sum rules. The quality of the obtained results is governed by the physical processes built in through MBPT but also by the choice of variational expressions. We here present several conserving response functions of different sophistication to be used in the calculation of the optical response of solids and nano-scale systems.Comment: 11 pages, 4 figures, revised versio

    Reptation in the Rubinstein-Duke model: the influence of end-reptons dynamics

    Full text link
    We investigate the Rubinstein-Duke model for polymer reptation by means of density-matrix renormalization group techniques both in absence and presence of a driving field. In the former case the renewal time \tau and the diffusion coefficient D are calculated for chains up to N=150 reptons and their scaling behavior in N is analyzed. Both quantities scale as powers of N: τNz\tau \sim N^z and D1/NxD \sim 1/N^x with the asymptotic exponents z=3 and x=2, in agreement with the reptation theory. For an intermediate range of lengths, however, the data are well-fitted by some effective exponents whose values are quite sensitive to the dynamics of the end reptons. We find 2.7 <z< 3.3 and 1.8 <x< 2.1 for the range of parameters considered and we suggest how to influence the end reptons dynamics in order to bring out such a behavior. At finite and not too small driving field, we observe the onset of the so-called band inversion phenomenon according to which long polymers migrate faster than shorter ones as opposed to the small field dynamics. For chains in the range of 20 reptons we present detailed shapes of the reptating chain as function of the driving field and the end repton dynamics.Comment: RevTeX 12 Pages and 14 figure
    corecore