34 research outputs found
The photochemistry and photophysics of a series of alpha octa(alkyl-substituted) silicon, zinc and palladium phthalocyanines
Photophysical and photochemical measurements have been made on a series of novel alpha octa(alkyl-substituted) silicon, zinc and palladium phthalocyanines for which the synthesis is outlined. Fluorescence quantum yields and lifetimes, triplet quantum yields and lifetimes and singlet delta oxygen quantum yields were measured in 1% v/v pyridine in toluene. The effects of varying central atom and addition of alkyl substituents relative to unsubstituted parent molecules, zinc phthalocyanine (ZnPc) and silicon phthalocyanine (SiPc), are discussed. All phthalocyanines studied exhibit absorption and emission maxima in the region of 680–750 nm with molar absorptivity of the Q-band 105 M−1 cm−1. The series of compounds also exhibited triplet quantum yields of 0.65–0.95 and singlet oxygen quantum yields of 0.49–0.93
The Photophysics and Photochemistry of a series of Phthalocyanines as Potential Photosensitisers in Photodynamic Therapy
Abstract
The photophysical and photochemical measurements have been made
on 3 series of novel alpha octa(alkyl-substituted) phthalocyanines.
Each series is defined by the distinct non-metal or metal ion centre,
silicon hydroxide, zinc(II) and palladium(II). It is well documented
that the phthalocyanine molecule possesses several distinct properties,
including absorption in the red, low fluorescence and high triplet
quantum yields that make it an ideal candidate as a potential
photosensitiser in photodynamic therapy. Photodynamic therapy is an
alternative treatment to cancer using a photosensitiser, which is
preferentially absorbed by malignant cells and remains dormant until
activated by red light. This results in the formation of singlet delta
oxygen via the excited state of the photosensitiser. The generation of
singlet oxygen leads to cell death.\ud
Fluorescence quantum yields and lifetimes, triplet quantum yields,
lifetimes and energies and singlet delta oxygen quantum yields were
measured in 1% v/v pyridine in toluene. The effects of alkyl
substitution, with increasing chain length, variation of metal ion centre
and the core modification of the phthalocyanine unit are investigated
and compared relative to the unsubstituted parent molecules, SiPc,
ZnPc and PdPc.
All substituted phthalocyanines exhibited a typical phthalocyanine
absorption spectrum with significant red-shift of the Q-band maxima.
Q-band maxima for all compounds ranged between 660 – 712 nm and
extinction coefficients of the Q-band between 10-4 – 10-5 M-1 cm-1. All
compounds also exhibited triplet quantum yields in the range 0.52 –
iii
0.96 and singlet delta oxygen quantum yields of 0.49 – 0.94,
illustrating promising photophysical and photochemical properties for
photodynamic therapy
Stargardt disease:monitoring incidence and diagnostic trends in the Netherlands using a nationwide disease registry
PURPOSE: To assess the incidence of Stargardt disease (STGD1) and to evaluate demographics of incident cases. METHODS: For this retrospective cohort study, demographic, clinical and genetic data of patients with a clinical diagnosis of STGD1 were registered between September 2010 and January 2020 in a nationwide disease registry. Annual incidence (2014-2018) and point prevalence (2018) were assessed on the basis of this registry. RESULTS: A total of 800 patients were registered, 56% were female and 83% were of European ancestry. The incidence was 1.67-1.95:1,000,000 per year and the point prevalence in 2018 was approximately 1:22,000-1:19,000 (with and without 10% of potentially unregistered cases). Age at onset was associated with sex (p = 0.027, Fisher's exact); 1.9x more women than men were observed (140 versus 74) amongst patients with an age at onset between 10 and 19 years, while the sex ratio in other age-at-onset categories approximated one. Late-onset STGD1 (≥45 years) constituted 33% of the diagnoses in 2014-2018 compared to 19% in 2004-2008. Diagnostic delay (≥2 years between the first documentation of macular abnormalities and diagnosis) was associated with older age of onset (p = 0.001, Mann-Whitney). Misdiagnosis for age-related macular degeneration (22%) and incidental STGD1 findings (14%) was common in patients with late-onset STGD1. CONCLUSION: The observed prevalence of STGD1 in real-world data was lower than expected on the basis of population ABCA4 allele frequencies. Late-onset STGD1 was more frequently diagnosed in recent years, likely due to higher awareness of its phenotype. In this pretherapeutic era, mis- and underdiagnosis of especially late-onset STGD1 and the role of sex in STGD1 should receive special attention
Histone methyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres
Cells respond to DNA double-strand breaks (DSBs) and uncapped telomeres by recruiting checkpoint and repair factors to the site of lesions. Single-stranded DNA (ssDNA) is an important intermediate in the repair of DSBs and is produced also at uncapped telomeres. Here, we provide evidence that binding of the checkpoint protein Rad9, through its Tudor domain, to methylated histone H3-K79 inhibits resection at DSBs and uncapped telomeres. Loss of DOT1 or mutations in RAD9 influence a Rad50-dependent nuclease, leading to more rapid accumulation of ssDNA, and faster activation of the critical checkpoint kinase, Mec1. Moreover, deletion of RAD9 or DOT1 partially bypasses the requirement for CDK1 in DSB resection. Interestingly, Dot1 contributes to checkpoint activation in response to low levels of telomere uncapping but is not essential with high levels of uncapping. We suggest that both Rad9 and histone H3 methylation allow transmission of the damage signal to checkpoint kinases, and keep resection of damaged DNA under control influencing, both positively and negatively, checkpoint cascades and contributing to a tightly controlled response to DNA damage
Ophthalmology
OBJECTIVE: In the current study we aimed to identify metabolites associated with age-related macular degeneration (AMD) by performing the largest metabolome association analysis in AMD to date. In addition, we aimed to determine the effect of AMD-associated genetic variants on metabolite levels, and aimed to investigate associations between the identified metabolites and activity of the complement system, one of the main AMD-associated disease pathways. DESIGN: Case-control assocation analysis of metabolomics data. SUBJECTS: 2,267 AMD cases and 4,266 controls from five European cohorts. METHODS: Metabolomics was performed using a high-throughput H-NMR metabolomics platform, which allows the quantification of 146 metabolite measurements and 79 derivative values. Metabolome-AMD associations were studied using univariate logistic regression analyses. The effect of 52 AMD-associated genetic variants on the identified metabolites was investigated using linear regression. In addition, associations between the identified metabolites and activity of the complement pathway (defined by the C3d/C3 ratio) were investigated using linear regression. MAIN OUTCOME MEASURES: Metabolites associated with AMD RESULTS: We identified 60 metabolites that were significantly associated with AMD, including increased levels of large and extra-large HDL subclasses and decreased levels of VLDL, amino acids and citrate. Out of 52 AMD-associated genetic variants, seven variants were significantly associated with 34 of the identified metabolites. The strongest associations were identified for genetic variants located in or near genes involved in lipid metabolism (ABCA1, CETP, APOE, LIPC) with metabolites belonging to the large and extra-large HDL subclasses. In addition, 57 out of 60 metabolites were significantly associated with complement activation levels, and these associations were independent of AMD status. Increased large and extra-large HDL levels and decreased VLDL and amino acid levels were associated with increased complement activation. CONCLUSIONS: Lipoprotein levels were associated with AMD-associated genetic variants, while decreased essential amino acids may point to nutritional deficiencies in AMD. We observed strong associations between the vast majority of the AMD-associated metabolites and systemic complement activation levels, independent of AMD status. This may indicate biological interactions between the main AMD disease pathways, and suggests that multiple pathways may need to be targeted simultaneously for successful treatment of AMD
PLoS One
Age-related macular degeneration (AMD) is a common, progressive multifactorial vision-threatening disease and many genetic and environmental risk factors have been identified. The risk of AMD is influenced by lifestyle and diet, which may be reflected by an altered metabolic profile. Therefore, measurements of metabolites could identify biomarkers for AMD, and could aid in identifying high-risk individuals. Hypothesis-free technologies such as metabolomics have a great potential to uncover biomarkers or pathways that contribute to disease pathophysiology. To date, only a limited number of metabolomic studies have been performed in AMD. Here, we aim to contribute to the discovery of novel biomarkers and metabolic pathways for AMD using a targeted metabolomics approach of 188 metabolites. This study focuses on non-advanced AMD, since there is a need for biomarkers for the early stages of disease before severe visual loss has occurred. Targeted metabolomics was performed in 72 patients with early or intermediate AMD and 72 control individuals, and metabolites predictive for AMD were identified by a sparse partial least squares discriminant analysis. In our cohort, we identified four metabolite variables that were most predictive for early and intermediate stages of AMD. Increased glutamine and phosphatidylcholine diacyl C28:1 levels were detected in non-advanced AMD cases compared to controls, while the rate of glutaminolysis and the glutamine to glutamate ratio were reduced in non-advanced AMD. The association of glutamine with non-advanced AMD corroborates a recent report demonstrating an elevated glutamine level in early AMD using a different metabolomics technique. In conclusion, this study indicates that metabolomics is a suitable method for the discovery of biomarker candidates for AMD. In the future, larger metabolomics studies could add to the discovery of novel biomarkers in yet unknown AMD pathways and expand our insights in AMD pathophysiology
Prevalence of Age-Related Macular Degeneration in Europe: The Past and the Future
Purpose Age-related macular degeneration (AMD) is a frequent, complex disorder in elderly of European ancestry. Risk profiles and treatment options have changed considerably over the years, which may have affected disease prevalence and outcome. We determined the prevalence of early and late AMD in Europe from 1990 to 2013 using the European Eye Epidemiology (E3) consortium, and made projections for the future. Design Meta-analysis of prevalence data. Participants A total of 42 080 individuals 40 years of age and older participating in 14 population-based cohorts from 10 countries in Europe. Methods AMD was diagnosed based on fundus photographs using the Rotterdam Classification. Prevalence of early and late AMD was calculated using random-effects meta-analysis stratified for age, birth cohort, gender, geographic region, and time period of the study. Best-corrected visual acuity (BCVA) was compared between late AMD subtypes; geographic atrophy (GA) and choroidal neovascularization (CNV). Main Outcome Measures Prevalence of early and late AMD, BCVA, and number of AMD cases. Results Prevalence of early AMD increased from 3.5% (95% confidence interval [CI] 2.1%–5.0%) in those aged 55–59 years to 17.6% (95%
The photochemistry and photophysics of a series of non-peripherally substituted zinc phthalocyanines
Photophysical and photochemical measurements have been made on a series of novel non-peripherally octa(alkyl-substituted) zinc phthalocyanines. Fluorescence quantum yields and lifetimes, triplet quantum yields and lifetimes and singlet delta oxygen quantum yields were measured in 1% v/v pyridine in toluene. The effects of alkyl substituents and increasing chain length relative to the unsubstituted parent molecule, zinc phthalocyanine (ZnPc), are discussed. ZnPc with alkyl substituents of chain length 5–15 carbons exhibited similar absorption and emission maxima (704 nm and 718 nm respectively) with the molar absorptivity of the Q-band [similar]105 M-1 cm-1. The series of compounds also exhibited triplet quantum yields of 0.78–0.84 and singlet oxygen quantum yields of 0.67–0.71
