5,942 research outputs found
Electrochemical methods for speciation of trace elements in marine waters. Dynamic aspects
The contribution of electrochemical methods
to the knowledge of dynamic speciation of toxic trace elements in marine waters is critically reviewed. Due to the importance
of dynamic considerations in the interpretation of the electrochemical signal, the principles and recent developments of kinetic features in the interconversion of metal complex species will be presented. As dynamic electrochemical
methods, only stripping techniques (anodic stripping voltammetry and stripping chronopotentiometry) will be used because they are the most important for the
determination of trace elements. Competitive ligand ex- change-adsorptive cathodic stripping voltammetry, which should be considered an equilibrium technique rather than a dynamic method, will be also discussed because the complexing parameters may be affected by some kinetic limitations if equilibrium before analysis is not attained and/or the flux of the adsorbed complex is in fluenced by the lability of the natural complexes in the water sample. For a correct data interpretation and system characterization the comparison of results obtained from different techniques seems essential in the articulation of a serious discussion of their meaning
Correlations in a confined magnetized free-electron gas
Equilibrium quantum statistical methods are used to study the pair
correlation function for a magnetized free-electron gas in the presence of a
hard wall that is parallel to the field. With the help of a path-integral
technique and a Green function representation the modifications in the
correlation function caused by the wall are determined both for a
non-degenerate and for a completely degenerate gas. In the latter case the
asymptotic behaviour of the correlation function for large position differences
in the direction parallel to the wall and perpendicular to the field, is found
to change from Gaussian in the bulk to algebraic near the wall.Comment: 24 pages, 10 figures, submitted to J. Phys. A: Math. Ge
Selection of radio pulsar candidates using artificial neural networks
Radio pulsar surveys are producing many more pulsar candidates than can be
inspected by human experts in a practical length of time. Here we present a
technique to automatically identify credible pulsar candidates from pulsar
surveys using an artificial neural network. The technique has been applied to
candidates from a recent re-analysis of the Parkes multi-beam pulsar survey
resulting in the discovery of a previously unidentified pulsar.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical
Society. 9 pages, 7 figures, and 1 tabl
Multi-interaction mean-field renormalization group
We present an extension of the previously proposed mean-field renormalization
method to model Hamiltonians which are characterized by more than just one type
of interaction. The method rests on scaling assumptions about the magnetization
of different sublattices of the given lattice and it generates as many flow
equations as coupling constants without arbitrary truncations on the
renormalized Hamiltonian. We obtain good results for the test case of Ising
systems with an additional second-neighbor coupling in two and three
dimensions. An application of the method is also done to a morphological model
of interacting surfaces introduced recenlty by Likos, Mecke and Wagner [J.
Chem. Phys. {\bf{102}}, 9350 (1995)].
PACS: 64.60.Ak, 64.60.Fr, 05.70.JkComment: Tex file and three macros appended at the end. Five figures available
upon request to: [email protected], Fax: [+]39-40-224-60
A Hubble Space Telescope ACS Search for Brown Dwarf Binaries in the Pleiades Open Cluster
We present the results of a high-resolution imaging survey for brown dwarf
binaries in the Pleiades open cluster. The observations were carried out with
the Advance Camera for Surveys onboard the Hubble Space Telescope. Our sample
consists of 15 bona-fide brown dwarfs. We confirm 2 binaries and detect their
orbital motion, but we did not resolve any new binary candidates in the
separation range between 5.4AU and 1700AU and masses in the range
0.035--0.065~Msun. Together with the results of our previous study (Martin et
al., 2003), we can derive a visual binary frequency of 13.3\%
for separations greater than 7~AU masses between 0.055--0.065~M_{\sun} and
mass ratios between 0.45--0.91.0. The other observed properties of
Pleiades brown dwarf binaries (distributions of separation and mass ratio)
appear to be similar to their older counterparts in the field.Comment: 29 pages, 7 figures, 6 tables, accepted for publication in Ap
Incorporation of Density Matrix Wavefunctions in Monte Carlo Simulations: Application to the Frustrated Heisenberg Model
We combine the Density Matrix Technique (DMRG) with Green Function Monte
Carlo (GFMC) simulations. The DMRG is most successful in 1-dimensional systems
and can only be extended to 2-dimensional systems for strips of limited width.
GFMC is not restricted to low dimensions but is limited by the efficiency of
the sampling. This limitation is crucial when the system exhibits a so-called
sign problem, which on the other hand is not a particular obstacle for the
DMRG. We show how to combine the virtues of both methods by using a DMRG
wavefunction as guiding wave function for the GFMC. This requires a special
representation of the DMRG wavefunction to make the simulations possible within
reasonable computational time. As a test case we apply the method to the
2-dimensional frustrated Heisenberg antiferromagnet. By supplementing the
branching in GFMC with Stochastic Reconfiguration (SR) we get a stable
simulation with a small variance also in the region where the fluctuations due
to minus sign problem are maximal. The sensitivity of the results to the choice
of the guiding wavefunction is extensively investigated. We analyse the model
as a function of the ratio of the next-nearest to nearest neighbor coupling
strength. We observe in the frustrated regime a pattern of the spin
correlations which is in-between dimerlike and plaquette type ordering, states
that have recently been suggested. It is a state with strong dimerization in
one direction and weaker dimerization in the perpendicular direction.Comment: slightly revised version with added reference
Steinberg modules and Donkin pairs
We prove that in positive characteristic a module with good filtration for a
group of type E6 restricts to a module with good filtration for a subgroup of
type F4. (Recall that a filtration of a module for a semisimple algebraic group
is called good if its layers are dual Weyl modules.) Our result confirms a
conjecture of Brundan for one more case. The method relies on the canonical
Frobenius splittings of Mathieu. Next we settle the remaining cases, in
characteristic not 2, with a computer-aided variation on the old method of
Donkin.Comment: 16 pages; proof of Brundan's conjecture adde
Modelling CO emission from Mira's wind
We have modelled the circumstellar envelope of {\it o} Ceti (Mira) using new
observational constraints. These are obtained from photospheric light scattered
in near-IR vibrational-rotational lines of circumstellar CO molecules at 4.6
micron: absolute fluxes, the radial dependence of the scattered intensity, and
two line ratios. Further observational constraints are provided by ISO
observations of far-IR emission lines from highly excited rotational states of
the ground vibrational state of CO, and radio observations of lines from
rotational levels of low excitation of CO. A code based on the Monte-Carlo
technique is used to model the circumstellar line emission.
We find that it is possible to model the radio and ISO fluxes, as well as the
highly asymmetric radio-line profiles, reasonably well with a spherically
symmetric and smooth stellar wind model. However, it is not possible to
reproduce the observed NIR line fluxes consistently with a `standard model' of
the stellar wind. This is probably due to incorrectly specified conditions of
the inner regions of the wind model, since the stellar flux needs to be larger
than what is obtained from the standard model at the point of scattering, i.e.,
the intermediate regions at approximately 100-400 stellar radii (2"-7") away
from the star. Thus, the optical depth in the vibrational-rotational lines from
the star to the point of scattering has to be decreased. This can be
accomplished in several ways. For instance, the gas close to the star (within
approximately 2") could be in such a form that light is able to pass through,
either due to the medium being clumpy or by the matter being in radial
structures (which, further out, developes into more smooth or shell-like
structures).Comment: 18 pages, 3 figures, accepted for publication in Ap
Why are the K dwarfs in the Pleiades so Blue?
The K dwarfs in the Pleiades fall nearly one half magnitude below a main
sequence isochrone when plotted in a color-magnitude diagram utilizing V
magnitude as the luminosity index and B-V as the color index. This peculiarity
has been known for forty years but has gone unexplained and mostly ignored.
When compared to Praesepe members, the Pleiades K dwarfs again are subluminous
(or blue) in a color-magnitude diagram using B-V as the color index. However,
using V-I as the color index, stars in the two clusters are coincident to M_V ~
10; using V-K as the color index, Pleiades late K and M stars fall above the
main sequence locus defined by Praesepe members. We believe that the anomalous
spectral energy distributions for the Pleiades K dwarfs, as compared to older
clusters, are a consequence of rapid stellar rotation and may be primarily due
to spottedness. If so, the required areal filling factor for the cool component
has to be very large (=> 50%). Weak-lined T Tauri stars have similar color
anomalies, and we suspect this is a common feature of all very young K dwarfs
(sp. type > K3). The peculiar spectral energy distribution needs to be
considered in deriving accurate pre-main sequence isochrone-fitting ages for
clusters like the Pleiades since the age derived will depend on the temperature
index used.Comment: 41 pages, 15 figures, AASTeX5.0. Accepted 05 May 2003; Scheduled for
publication in the Astronomical Journal (August 2003
- …
