2,679 research outputs found
A formal account of dishonesty
International audienceThis paper provides formal accounts of dishonest attitudes of agents. We introduce a propositional multi-modal logic that can represent an agent's belief and intention as well as communication between agents. Using the language, we formulate different categories of dishonesty. We first provide two different definitions of lies and provide their logical properties. We then consider an incentive behind the act of lying and introduce lying with objectives. We subsequently define bullshit, withholding information and half-truths, and analyze their formal properties. We compare different categories of dishonesty in a systematic manner, and examine their connection to deception. We also propose maxims for dishonest communication that agents should ideally try to satisfy
Magnetic tunneling junctions with the Heusler compound Co_2Cr_{0.6}Fe_{0.4}Al
The Heusler alloy is used as an electrode of magnetic tunneling junctions.
The junctions are deposited by magnetron dc sputtering using shadow mask
techniques with AlO_{x} as a barrier and cobalt as counter electrode.
Measurements of the magnetoresistive differential conductivity in a temperature
range between 4K and 300K are shown. An analysis of the barrier properties
applying the Simmons model to the bias dependent junction conductivity is
performed. VSM measurements were carried out to examine the magnetic properties
of the samples.Comment: 3 pages, 3 figures submitted to JMMM (proceedings of JEMS04
Enhanced Spin Dependent Shot Noise in Magnetic Tunnel Barriers
We report the observation of enhanced spin dependent shot noise in magnetic
tunnel barriers, suggesting transport through localized states within the
barrier. This is supported by the existence of negative magnetoresistance and
structure in the differential conductance curves. A simple model of tunneling
through two interacting localized states with spin dependent tunneling rates is
used to explain our observations.Comment: 8 pages, 8 figures, submitted to Physica E (proceedings of the
seminar on Quantum Coherence, Noise and Decoherence in Nanostructures
Size-effects in the Density of States in NS and SNS junctions
The quasiparticle local density of states (LDOS) is studied in clean NS and
SNS junctions with increasing transverse size, from quasi-one-dimensional to
three-dimensional. It is shown that finite transverse dimensions are related to
pronounced effects in the LDOS, such as fast oscillations superimposed on the
quasiparticle interference oscillations (for NS) and additional peaks in the
bound state spectrum in the subgap region (for SNS). Also, the validity of the
Andreev approximation is discussed. It turns out to be an acceptable
approximation in all situations tested.Comment: 9 pages, RevTex, 5 figures, accepted in Phys. Rev.
Lime stabilisation for earthworks: a UK perspective
Lime stabilisation is a versatile technique applied during earthworks operations. Modern soil recycling units are much more efficient at pulverising fill material and intermixing the added binder/water than machinery available 20 years ago. While supplier innovation adds flexibility to the site working method, specifications have not been sufficiently updated to permit optimal application. This review paper details the physico-chemical changes instigated through the lime-clay soil reaction, updating previous reviews. It aims to assist scientific debate, current practitioners and future specification changes. For example, the application of the minimum 24 h mellowing periods (mandatory to UK specifications) with high reactivity, quicklime powders is concluded to cause increased air voids in the compacted fill. Increased air voids are associated with reduced long-term strength and potential volume change from water ingress, which is of particular concern for sulfate swelling. Shorter mellowing periods and/or use of hydrated lime may lesson this issue; however, a 'one size fits all' approach is discouraged in preference to site-specific methodologies refined to suit the fill material and project requirements. The discussion also summarises working methods which may lower the risk of sulfate swell and defines areas requiring further practical research
Mesoscopic proximity effect in double barrier Superconductor/Normal Metal junctions
We report transport measurements down to T=60mK of SININ and SNIN structures
in the diffusive limit. We fabricated Al-AlOx/Cu/AlOx/Cu (SININ) and
Al/Cu/AlOx/Cu (SNIN) vertical junctions. For the first time, a zero bias
anomaly was observed in a metallic SININ structure. We attribute this peak of
conductance to coherent multi-reflections of electrons between the two tunnel
barriers. This conductance maximum is quantitatively fitted by the relevant
theory of mesoscopic SININ structures. When the barrier at the SN interface is
removed (SNIN structure), we observe a peak of conductance at finite voltage
accompagnied by an excess of sub-gap conductance.Comment: 4 pages, 4 figures, editorially approved for publication in Phys.
Rev. B Rapid Com
The optical system of the H.E.S.S. imaging atmospheric Cherenkov telescopes, Part II: mirror alignment and point spread function
Mirror facets of the H.E.S.S. imaging atmospheric Cherenkov telescopes are
aligned using stars imaged onto the closed lid of the PMT camera, viewed by a
CCD camera. The alignment procedure works reliably and includes the automatic
analysis of CCD images and control of the facet alignment actuators. On-axis,
80% of the reflected light is contained in a circle of less than 1 mrad
diameter. The spot widens with increasing angle to the telescope axis. In
accordance with simulations, the spot size has roughly doubled at an angle of
1.4 degr. from the axis. The expected variation of spot size with elevation due
to deformations of the support structure is visible, but is completely
non-critical over the usual working range. Overall, the optical quality of the
telescope exceeds the specifications.Comment: 23 pages, 13 figure
3 to 12 millimetre studies of dense gas towards the western rim of supernova remnant RX J1713.7-3946
The young X-ray and gamma-ray-bright supernova remnant RXJ1713.7-3946 (SNR
G347.3-0.5) is believed to be associated with molecular cores that lie within
regions of the most intense TeV emission. Using the Mopra telescope, four of
the densest cores were observed using high-critical density tracers such as
CS(J=1-0,J=2-1) and its isotopologue counterparts, NH3(1,1) and (2,2) inversion
transitions and N2H+(J=1-0) emission, confirming the presence of dense gas
>10^4cm^-3 in the region. The mass estimates for Core C range from 40M_{\odot}
(from CS(J=1-0)) to 80M_{\odot} (from NH3 and N2H+), an order of magnitude
smaller than published mass estimates from CO(J=1-0) observations. We also
modelled the energy-dependent diffusion of cosmic-ray protons accelerated by
RXJ1713.7-3946 into Core C, approximating the core with average density and
magnetic field values. We find that for considerably suppressed diffusion
coefficients (factors \chi=10^{-3} down to 10^{-5} the galactic average), low
energy cosmic-rays can be prevented from entering the inner core region. Such
an effect could lead to characteristic spectral behaviour in the GeV to TeV
gamma-ray and multi-keV X-ray fluxes across the core. These features may be
measurable with future gamma-ray and multi-keV telescopes offering arcminute or
better angular resolution, and can be a novel way to understand the level of
cosmic-ray acceleration in RXJ1713.7-3946 and the transport properties of
cosmic-rays in the dense molecular cores.Comment: 17 pages, 13 figures and 5 tables. Accepted for publication in MNRAS
2012 February 1
Elastic constants of nematic liquid crystals of uniaxial symmetry
We study in detail the influence of molecular interactions on the Frank
elastic constants of uniaxial nematic liquid crystals composed of molecules of
cylindrical symmetry. A brief summary of the status of theoretical development
for the elastic constants of nematics is presented. Considering a pair
potential having both repulsive and attractive parts numerical calculations are
reported for three systems MBBA, PAA and 8OCB. For these systems the
length-to-width ratio is estimated from the experimentally proposed
structure of the molecules. The repulsive interaction is represented by a
repulsion between hard ellipsoids of revolution (HER) and the attractive
potential is represented by the quadrupole and dispersion interactions. From
the numerical results we observe that in the density range of nematics the
contribution of the quadrupole and dispersion interactions are small as
compared to the repulsive HER interaction. The inclusion of attractive
interaction reduces the values of elastic constants ratios. The temperature
variation of elastic constants ratios are reported and compared with the
experimental values. A reasonably good agreement between theory and experiment
is observed
Quantum Effects in Coulomb Blockade
We review the quantum interference effects in a system of interacting
electrons confined to a quantum dot. The review starts with a description of an
isolated quantum dot. We discuss the status of the Random Matrix theory (RMT)
of the one-electron states in the dot, present the universal form of the
interaction Hamiltonian compatible with the RMT, and derive the leading
corrections to the universal interaction Hamiltonian. Next, we discuss a
theoretical description of a dot connected to leads via point contacts. Having
established the theoretical framework to describe such an open system, we
discuss its transport and thermodynamic properties. We review the evolution of
the transport properties with the increase of the contact conductances from
small values to values . In the discussion of transport, the
emphasis is put on mesoscopic fluctuations and the Kondo effect in the
conductance.Comment: 169 pages, 28 figures; several references and footnotes are added,
and noticed typos correcte
- …
