1,668 research outputs found
A Unifying Framework for Strong Structural Controllability
This paper deals with strong structural controllability of linear systems. In
contrast to existing work, the structured systems studied in this paper have a
so-called zero/nonzero/arbitrary structure, which means that some of the
entries are equal to zero, some of the entries are arbitrary but nonzero, and
the remaining entries are arbitrary (zero or nonzero). We formalize this in
terms of pattern matrices whose entries are either fixed zero, arbitrary
nonzero, or arbitrary. We establish necessary and sufficient algebraic
conditions for strong structural controllability in terms of full rank tests of
certain pattern matrices. We also give a necessary and sufficient graph
theoretic condition for the full rank property of a given pattern matrix. This
graph theoretic condition makes use of a new color change rule that is
introduced in this paper. Based on these two results, we then establish a
necessary and sufficient graph theoretic condition for strong structural
controllability. Moreover, we relate our results to those that exists in the
literature, and explain how our results generalize previous work.Comment: 11 pages, 6 Figure
COMETABOLIC DEGRADATION OF CHLOROALLYL ALCOHOLS IN BATCH AND CONTINUOUS CULTURES
The biodegradation of chloroallyl alcohols by pure and mixed bacterial cultures was investigated. Only 2-chloroallyl alcohol and cis- and trans-3-chloroallyl alcohol served as growth substrate for pure cultures. The other chloroallyl alcohols could be cometabolically degraded during growth on 2-chloroallyl alcohol. Cometabolic degradation of trichloroallyl alcohol, which was the most recalcitrant congener, by a Pseudomonas strain isolated on 2-chloroallyl alcohol resulted in 60% dechlorination. Efficient degradation of a mixture of chloroallyl alcohols in continuous culture could only be achieved in the presence of a satellite population. The mixed culture degraded 99% of the total chloroallyl alcohols added with 71% chloride release. The culture contained strains with a new catabolic potential. The results indicate the importance of mixed cultures and genetic adaptation for efficient chloroallyl alcohol removal
Health-economic outcomes in hospital patients with medical-psychiatric comorbidity: A systematic review and meta-analysis
Background: Hospital inpatients often experience medical and psychiatric problems simultaneously. Although this implies a certain relationship between healthcare utilization and costs, this relationship has never been systematically reviewed. Objective: The objective is to examine the extent to which medical-psychiatric comorbidities relate to health-economic outcomes in general and in different subgroups. If the relationship is significant, this would give additional reasons to facilitate the search for targeted and effective treatments for this complex population. Method: A systematic review in Embase, Medline, Psycinfo, Cochrane, Web of Science and Google Scholar was performed up to August 2016 and included cross-references from included studies. Only peer-reviewed empirical studies examining the impact of inpatient medical-psychiatric comorbidities on three health-economic outcomes (length of stay (LOS), medical costs and rehospitalizations) were included. Study design was not an exclusion criterion, there were no restrictions on publication dates and patients included had to be over 18 years. The examined populations consisted of inpatients with medical-psychiatric comorbidities and controls. The controls were inpatients without a comorbid medical or psychiatric disorder. Non-English studies were excluded. Results: From electronic literature databases, 3165 extracted articles were scrutinized on the basis of title and abstract. This resulted in a full-text review of 86 articles: 52 unique studies were i
Sex steroid hormones and brain function:PET imaging as a tool for research
Sex steroid hormones are major regulators of sexual characteristic among species. These hormones, however, are also produced in the brain. Steroidal hormone-mediated signalling via the corresponding hormone receptors can influence brain function at the cellular level and thus affect behaviour and higher brain functions. Altered steroid hormone signalling has been associated with psychiatric disorders, such as anxiety and depression. Neurosteroids are also considered to have a neuroprotective effect in neurodegenerative diseases. So far, the role of steroid hormone receptors in physiological and pathological conditions has mainly been investigated post mortem on animal or human brain tissues. To study the dynamic interplay between sex steroids, their receptors, brain function and behaviour in psychiatric and neurological disorders in a longitudinal manner, however, non-invasive techniques are needed. Positron emission tomography (PET) is a non-invasive imaging tool that is used to quantitatively investigate a variety of physiological and biochemical parameters in vivo. PET uses radiotracers aimed at a specific target (eg, receptor, enzyme, transporter) to visualise the processes of interest. In this review, we discuss the current status of the use of PET imaging for studying sex steroid hormones in the brain. So far, PET has mainly been investigated as a tool to measure (changes in) sex hormone receptor expression in the brain, to measure a key enzyme in the steroid synthesis pathway (aromatase) and to evaluate the effects of hormonal treatment by imaging specific downstream processes in the brain. Although validated radiotracers for a number of targets are still warranted, PET can already be a useful technique for steroid hormone research and facilitate the translation of interesting findings in animal studies to clinical trials in patients
Clinical predictors of seizure threshold in electroconvulsive therapy: a prospective study
At the start and during the course of electroconvulsive therapy (ECT), estimation of the seizure threshold (ST) is useful in weighing the expected effectiveness against the risks of side effects. Therefore, this study explores clinical factors predicting initial ST (IST) and levels of ST during the ECT course. This prospective observational study included patients aged ≥18 years receiving ECT without contraindications for dose titration. At the first and every sixth consecutive ECT session, ST level was measured. Using multivariate linear regression and multilevel models, predictors for IST and change in ST levels were examined. A total of 91 patients (mean age, 59.1 ± 15.0 years; 37 % male; 97 % diagnosis of depression) were included. In multivariable analysis, higher age (β = 0.24; P = 0.03) and bifrontotemporal (BL) electrode placement (β = 0.42; P < 0.001) were independent predictors for higher IST, explaining 49 % of its variation. Also, these two variables independently predicted higher ST levels at different time points during the course. Using multilevel models, absence of a previous ECT course(s) predicted a steeper rise in ST during the course (P = 0.03 for the interaction term time*previous ECT). The age-adjusted dose-titration method is somewhat crude, resulting in some measurement error. Concomitant medication use could have influenced ST levels. Increasing age and BL electrode placement predicted higher (I)ST, which should be taken into account when selecting ECT dosage. Previous ECT course(s) may avoid an increase in ST during the course of ECT
Rapid reduction of sigma(1)-Receptor binding and F-18-FDG uptake in rat gliomas after in vivo treatment with doxorubicin
sigma-Receptors are strongly overexpressed in most rodent and human tumors and are proliferation markers. To evaluate the potential of a radiolabeled sigma(1)-ligand for therapy monitoring, we compared early changes of C-11-1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl)piperazine (C-11-SA4503) binding and F-18-FDG uptake in gliomas after in vivo chemotherapy. Methods: C6 cells (2.5 x 10(6)) were subcutaneously injected into the right shoulder of male Wistar rats. After 7 cl, the tumor volume was 0.60 +/- 0.08 cm(3). Animals then received either saline or doxorubicin (8 mg/kg, intraperitoneally). One control and 1 treated rat were imaged simultaneously, 24 or 48 h after treatment, under pentobarbital anesthesia. Rodents (n = 20) were scanned first with C-11-SA4503 (25 MBq, intravenously) followed more than 100 min afterward by 18F-FDG (20 MBq, intravenously), using a dedicated small-animal PET camera (60-min protocol, tumors in the field of view). Tumor homogenates were prepared and subjected to sigma-receptor assays. The biodistribution of 18F-FDG was assessed. Results: Tumors appeared 4-5 d after inoculation and grew exponentially. No significant reduction of tumor growth was visible within 48 h after doxorubicin treatment. Both PET tracers visualized the tumors and showed reduced uptake after chemotherapy (C-11-SA4503: 26.5% +/- 6.5% at 24 h, 26.5% +/- 7.5% at 48 h; 18F-FDG: 22.6% +/- 3.2% at 24 h, 27.4% +/- 3.2% at 48 h; ex vivo F-18-FDG: 22.4% +/- 5.4% at 24 h, 31.7% +/- 12.7% at 48 h). sigma(1)-Receptor density in treated tumors was also reduced (from 172 +/- 35 to 125 +/- 28 fmol/mg of protein). Conclusion: Both C-11-SA4503 binding and 18F-FDG uptake declined in gliomas after chemotherapy. Decreased binding of C-11-SA4503 corresponded to a loss of (sigma(1)-receptors from the tumors. Changes in tracer uptake preceded the morphologic changes by at least 48 h
Beyond Persistent Excitation: Online Experiment Design for Data-Driven Modeling and Control
This paper presents a new experiment design method for data-driven modeling
and control. The idea is to select inputs online (using past input/output
data), leading to desirable rank properties of data Hankel matrices. In
comparison to the classical persistency of excitation condition, this online
approach requires less data samples and is even shown to be completely sample
efficient
- …
