215 research outputs found
Glacier velocities and dynamic ice discharge from the Queen Elizabeth Islands, Nunavut, Canada
Recent studies indicate an increase in glacier mass loss from the Canadian Arctic Archipelago as a result of warmer summer air temperatures. However, no complete assessment of dynamic ice discharge from this region exists. We present the first complete surface velocity mapping of all ice masses in the Queen Elizabeth Islands and show that these ice masses discharged ~2.6 ± 0.8 Gt a−1 of ice to the oceans in winter 2012. Approximately 50% of the dynamic discharge was channeled through non surge-type Trinity and Wykeham Glaciers alone. Dynamic discharge of the surge-type Mittie Glacier varied from 0.90 ± 0.09 Gt a−1 during its 2003 surge to 0.02 ± 0.02 Gt a−1 during quiescence in 2012, highlighting the importance of surge-type glaciers for interannual variability in regional mass loss. Queen Elizabeth Islands glaciers currently account for ~7.5% of reported dynamic discharge from Arctic ice masses outside Greenland.We thank NSERC, Canada Foundation for Innovation, Ontario Research Fund, ArcticNet,
Ontario Graduate Scholarship, University of Ottawa and the NSERC Canada Graduate Scholarship for funding. RADARSAT-2 data were provided by MacDonald, Dettwiler and
Associates under the RADARSAT-2 Government Data Allocation administrated by the Canadian Space Agency. Support to DB is provided through the Climate Change Geosciences Program, Earth Sciences Sector, Natural Resources Canada (ESS Contribution #20130293). We also acknowledge support from U.K NERC for grants R3/12469 and NE/K004999 to JAD.This is the accepted version of an article published in Geophysical Research Letters. An edited version of this paper was published by AGU. Copyright (2014) American Geophysical Union. The final version is available at http://onlinelibrary.wiley.com/doi/10.1002/2013GL058558/abstract;jsessionid=6A3AD907C4383DA5D4E20C4924D6EC18.f02t02
Seasonal Variability of Ice Motion for Hubbard and Valerie Glaciers, Alaska
Hubbard Glacier is a large fast-flowing tidewater-terminating glacier in the St. Elias Mountains and is connected at its terminus to Valerie Glacier. Although Hubbard Glacier has been shown to experience large intra-annual velocity changes and a long-term deceleration, previous seasonality studies have had limited timescale without a dense record of motion. Valerie Glacier’s variability has also been understudied, with only one study reporting its seasonal behaviour. The goal of this study was to combine ITS_LIVE, RADARSAT-2, RADARSAT Constellation Mission, and TerraSAR-X/TanDEM-X derived velocity data to create the densest record of motion ever constructed for Hubbard and Valerie glaciers from July 2013-April 2022 in order to explore seasonal velocity variability of both glaciers. Air temperature (NCEP-NCAR Reanalysis) was used to estimate surface melt on the glaciers, which was explored as a potential driver for seasonal velocity changes. Valerie Glacier had a seasonal pattern of fast flow in May, with minimum flow between August-November before accelerating again. Hubbard Glacier displayed a unique seasonal pattern that has not been previously observed on this glacier, with two periods of fast motion: one in May and one in December-February. It is inferred that the spring peaks and late summer/fall minimums on both glaciers are due to meltwater reaching the glacier bed and influencing the subglacial hydrology. The cause of the winter peak and slight velocity drop before the spring peak on Hubbard Glacier has not been determined and should be a topic for future studies, although it is hypothesized to influenced by its geometry
‘Detachment’ of icefield outlet glaciers – catastrophic thinning and retreat of the Columbia Glacier (Canada)
We present an investigation of changes taking place on the Columbia Glacier – a lake-terminating outlet of the Columbia Icefield in the Canadian Rockies. The Columbia Icefield is the largest, and one of the most important, ice bodies in the Canadian Rockies. Like other ice masses, it stores water as snow and ice during the winter and releases it during warmer summer months, sustaining river flows and the ecosystems that rely on them. However, the Columbia Glacier and Icefield is shrinking. We use Landsat and Sentinel-2 imagery to show that the Columbia Glacier has retreated increasingly rapidly in recent years, and suggest that this looks set to continue. Importantly, we identify a previously undocumented process that appears to be playing an important role in the retreat of this glacier. This process involves the ‘detachment’ of the glacier tongue from its accumulation area in the Columbia Icefield. This process is important because the tongue is cut off from the accumulation area and there is no replenishment of ice that melts in the glacier's ablation area by flow from upglacier. As a consequence, for a given rate of ablation, the ice in the tongue will disappear much faster than it would if the local mass loss by melting/calving was partly offset by mass input by glacier flow. Such a change would alter the relationship between rates of surface melting and rates of glacier frontal retreat. We provide evidence that detachment has already occurred elsewhere on the Columbia Icefield and that it is likely to affect other outlet glaciers in the future. Modelling studies forecast this detachment activity, which ultimately results in a smaller ‘perched’ icefield without active outlets
Evolution of the dynamics of Airdrop Glacier, western Axel Heiberg Island, over a seven decade long advance
Various remotely sensed data, including historical aerial photographs, declassified intelligence satellite photographs, optical satellite imagery, and synthetic aperture radar data, were used to undertake the first comprehensive reconstruction of the dynamics of Airdrop Glacier on Axel Heiberg Island, Nunavut. Observations show a continuous terminus advance totalling ∼6 km since 1950 and notably less variability in its surface velocities in comparison to adjacent Iceberg Glacier. This advance is concurrent with relatively high flow rates over its entire surface, resulting in significant thickening near the terminus and thinning at higher elevations. Velocities have more than halved from the mid-2000s to 2021, but without any definitive evidence of previous flow instabilities, we cannot confirm whether Airdrop's behaviour is cyclic in nature and therefore characteristic of a surge. Instead, Airdrop Glacier could be experiencing a delayed response to the positive mass balance conditions of the Little Ice Age, which could also explain the advance of other nearby glaciers. Its recent slowdown could then be indicative of a gradual adjustment to recent climatic conditions. This study highlights the need for comprehensive studies of glacier dynamics in the Canadian Arctic to improve our understanding of the factors triggering dynamic instabilities and causing the observed variety of behaviours
Recommended from our members
Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification: Laboratory Analytical Procedure (LAP)
This procedure is based on a whole biomass transesterification of lipids to fatty acid methyl esters to represent an accurate reflection of the potential of microalgal biofuels. Lipids are present in many forms and play various roles within an algal cell, from cell membrane phospholipids to energy stored as triacylglycerols
Dynamics throughout a complete surge of Iceberg Glacier on western Axel Heiberg Island, Canadian High Arctic
Flow and structure in a dendritic glacier with bedrock steps
Sherpa Romeo green journal. Open access article. Creative Commons Attribution 4.0 International (CC BY 4.0) appliesWe analyse ice flow and structural glaciology of Shackleton Glacier, a dendritic glacier with multiple ice falls in the Canadian Rockies. A major tributary-trunk junction allows us to investigate the potential of tributaries to alter trunk flow and structure, and the formation of bedrock steps at confluences. Multi-year velocity-stake data and structural glaciology up-glacier from the junction were assimilated with glacier-wide velocity derived from Radarsat-2 speckle tracking. Maximum flow speeds are 65 m a−1 in the trunk and 175 m a−1 in icefalls. Field and remote-sensing velocities are in good agreement, except where velocity gradients are high. Although compression occurs in the trunk up-glacier of the tributary entrance, glacier flux is steady state because flow speed increases at the junction due to the funnelling of trunk ice towards an icefall related to a bedrock step. Drawing on a published erosion model, we relate the heights of the step and the hanging valley to the relative fluxes of the tributary and trunk. It is the first time that an extant glacier is used to test and support such model. Our study elucidates the inherent complexity of tributary/trunk interactions and provides a conceptual model for trunk flow restriction by a tributary in surge-type glaciers.Ye
Why Don't They Just Give Us Money? Project Cost Estimating and Cost Reporting
Successful projects require an integrated approach to managing cost, schedule, and risk. This is especially true for complex, multi-year projects involving multiple organizations. To explore solutions and leverage valuable lessons learned, NASA's Virtual Project Management Challenge will kick off a three-part series examining some of the challenges faced by project and program managers when it comes to managing these important elements. In this first session of the series, we will look at cost management, with an emphasis on the critical roles of cost estimating and cost reporting. By taking a proactive approach to both of these activities, project managers can better control life cycle costs, maintain stakeholder confidence, and protect other current and future projects in the organization's portfolio. Speakers will be Doug Comstock, Director of NASA's Cost Analysis Division, Kristin Van Wychen, Senior Analyst in the GAO Acquisition and Sourcing Management Team, and Mary Beth Zimmerman, Branch Chief for NASA's Portfolio Analysis Branch, Strategic Investments Division. Moderator Ramien Pierre is from NASA's Academy for Program/Project and Engineering Leadership (APPEL)
- …
