3,831 research outputs found

    Deep determinism and the assessment of mechanistic interaction between categorical and continuous variables

    Get PDF
    Our aim is to detect mechanistic interaction between the effects of two causal factors on a binary response, as an aid to identifying situations where the effects are mediated by a common mechanism. We propose a formalization of mechanistic interaction which acknowledges asymmetries of the kind "factor A interferes with factor B, but not viceversa". A class of tests for mechanistic interaction is proposed, which works on discrete or continuous causal variables, in any combination. Conditions under which these tests can be applied under a generic regime of data collection, be it interventional or observational, are discussed in terms of conditional independence assumptions within the framework of Augmented Directed Graphs. The scientific relevance of the method and the practicality of the graphical framework are illustrated with the aid of two studies in coronary artery disease. Our analysis relies on the "deep determinism" assumption that there exists some relevant set V - possibly unobserved - of "context variables", such that the response Y is a deterministic function of the values of V and of the causal factors of interest. Caveats regarding this assumption in real studies are discussed.Comment: 20 pages including the four figures, plus two tables. Submitted to "Biostatistics" on November 24, 201

    Integrated multiple mediation analysis: A robustness–specificity trade-off in causal structure

    Get PDF
    Recent methodological developments in causal mediation analysis have addressed several issues regarding multiple mediators. However, these developed methods differ in their definitions of causal parameters, assumptions for identification, and interpretations of causal effects, making it unclear which method ought to be selected when investigating a given causal effect. Thus, in this study, we construct an integrated framework, which unifies all existing methodologies, as a standard for mediation analysis with multiple mediators. To clarify the relationship between existing methods, we propose four strategies for effect decomposition: two-way, partially forward, partially backward, and complete decompositions. This study reveals how the direct and indirect effects of each strategy are explicitly and correctly interpreted as path-specific effects under different causal mediation structures. In the integrated framework, we further verify the utility of the interventional analogues of direct and indirect effects, especially when natural direct and indirect effects cannot be identified or when cross-world exchangeability is invalid. Consequently, this study yields a robustness–specificity trade-off in the choice of strategies. Inverse probability weighting is considered for estimation. The four strategies are further applied to a simulation study for performance evaluation and for analyzing the Risk Evaluation of Viral Load Elevation and Associated Liver Disease/Cancer data set from Taiwan to investigate the causal effect of hepatitis C virus infection on mortality

    Bounding bias due to selection

    Full text link
    When epidemiologic studies are conducted in a subset of the population, selection bias can threaten the validity of causal inference. This bias can occur whether or not that selected population is the target population, and can occur even in the absence of exposure-outcome confounding. However, it is often difficult to quantify the extent of selection bias, and sensitivity analysis can be challenging to undertake and to understand. In this article we demonstrate that the magnitude of the bias due to selection can be bounded by simple expressions defined by parameters characterizing the relationships between unmeasured factor(s) responsible for the bias and the measured variables. No functional form assumptions are necessary about those unmeasured factors. Using knowledge about the selection mechanism, researchers can account for the possible extent of selection bias by specifying the size of the parameters in the bounds. We also show that the bounds, which differ depending on the target population, result in summary measures that can be used to calculate the minimum magnitude of the parameters required to shift a risk ratio to the null. The summary measure can be used to determine the overall strength of selection that would be necessary to explain away a result. We then show that the bounds and summary measures can be simplified in certain contexts or with certain assumptions. Using examples with varying selection mechanisms, we also demonstrate how researchers can implement these simple sensitivity analyses

    Natural direct and indirect effects on the exposed : effect decomposition under weaker assumptions

    Get PDF
    We define natural direct and indirect effects on the exposed. We show that these allow for effect decomposition under weaker identification conditions than population natural direct and indirect effects. When no confounders of the mediator-outcome association are affected by the exposure, identification is possible under essentially the same conditions as for controlled direct effects. Otherwise, identification is still possible with additional knowledge on a nonidentifiable selection-bias function which measures the dependence of the mediator effect on the observed exposure within confounder levels, and which evaluates to zero in a large class of realistic data-generating mechanisms. We argue that natural direct and indirect effects on the exposed are of intrinsic interest in various applications. We moreover show that they coincide with the corresponding population natural direct and indirect effects when the exposure is randomly assigned. In such settings, our results are thus also of relevance for assessing population natural direct and indirect effects in the presence of exposure-induced mediator-outcome confounding, which existing methodology has not been able to address

    Joint analysis of SNP and gene expression data in genetic association studies of complex diseases

    Full text link
    Genetic association studies have been a popular approach for assessing the association between common Single Nucleotide Polymorphisms (SNPs) and complex diseases. However, other genomic data involved in the mechanism from SNPs to disease, for example, gene expressions, are usually neglected in these association studies. In this paper, we propose to exploit gene expression information to more powerfully test the association between SNPs and diseases by jointly modeling the relations among SNPs, gene expressions and diseases. We propose a variance component test for the total effect of SNPs and a gene expression on disease risk. We cast the test within the causal mediation analysis framework with the gene expression as a potential mediator. For eQTL SNPs, the use of gene expression information can enhance power to test for the total effect of a SNP-set, which is the combined direct and indirect effects of the SNPs mediated through the gene expression, on disease risk. We show that the test statistic under the null hypothesis follows a mixture of χ2\chi^2 distributions, which can be evaluated analytically or empirically using the resampling-based perturbation method. We construct tests for each of three disease models that are determined by SNPs only, SNPs and gene expression, or include also their interactions. As the true disease model is unknown in practice, we further propose an omnibus test to accommodate different underlying disease models. We evaluate the finite sample performance of the proposed methods using simulation studies, and show that our proposed test performs well and the omnibus test can almost reach the optimal power where the disease model is known and correctly specified. We apply our method to reanalyze the overall effect of the SNP-set and expression of the ORMDL3 gene on the risk of asthma.Comment: Published in at http://dx.doi.org/10.1214/13-AOAS690 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore