1,664 research outputs found

    Size Dependent Antimicrobial Properties of Sugar Encapsulated Gold Nanoparticles

    Get PDF
    The antimicrobial properties of dextrose encapsulated gold nanoparticles (dGNPs) with average diameters of 25 nm, 60 nm, and 120 nm (± 5 nm) synthesized by green chemistry principles were investigated against both Gram-negative and Gram-positive bacteria. Studies were performed involving the effect of the dGNPs on the growth, morphology and the ultrastructural properties of bacteria. dGNPs were found to have significant dose dependent antibacterial activity which was directly proportional to their size and also their concentration. The microbial assays revealed the dGNPs to be bacteriostatic as well as bactericidal. The dGNPs exhibited their bactericidal action through the disruption of the bacterial cell membrane causing leakage of cytoplasmic content. The overall outcomes of this study suggest that dGNPs hold promise as a potent antimicrobial agent against a wide range of disease causing bacteria and can control and prevent possible infections or diseases

    The Economic and Environmental Impact of Great Lakes Manufacturing: Snapshot of Emissions, Pollution Prevention Practices, and Economic Impact Using Public Data

    Get PDF
    In this report, the Great Lakes Regional Pollution Prevention Roundtable (GLRPPR) has used publicly available environmental data to establish a regional baseline for industrial chemical use and emissions; pollution prevention (P2) techniques; greenhouse gas (GHG) emissions; and economic impact data for selected industry sectors in U.S. EPA Region 5. The project team searched, compiled, and analyzed selected data sets from USEPA’s Toxics Release Inventory (TRI), the GHG emissions database on Envirofacts, and the Census Bureau’s County Business Patterns database on American FactFinder.This project was funded under U.S. EPA’s Pollution Prevention Information Network grant program (agreement number NP-00E01338).Ope

    Robust spatially resolved pressure measurements using MRI with novel buoyant advection-free preparations of stable microbubbles in polysaccharide gels

    Get PDF
    MRI of fluids containing lipid coated microbubbles has been shown to be an effective tool for measuring the local fluid pressure. However, the intrinsically buoyant nature of these microbubbles precludes lengthy measurements due to their vertical migration under gravity and pressure-induced coalescence. A novel preparation is presented which is shown to minimize both these effects for at least 25 min. By using a 2% polysaccharide gel base with a small concentration of glycerol and 1,2-distearoyl-sn-glycero-3-phosphocholine coated gas microbubbles, MR measurements are made for pressures between 0.95 and 1.44 bar. The signal drifts due to migration and amalgamation are shown to be minimized for such an experiment whilst yielding very high NMR sensitivities up to 38% signal change per bar

    Funneling Light Through a Subwavelength Aperture with Epsilon-Near-Zero Materials

    Full text link
    Integration of the next generation of photonic structures with electronic and optical on-chip components requires the development of effective methods for confining and controlling light in subwavelength volumes. Several techniques enabling light coupling to sub-wavelength objects have recently been proposed, including grating-, and composite-based solutions. However, experi-mental realization of these couplers involves complex fabrication with \sim 10nm resolution in three dimensions. One promising alternative to complex coupling structures involves materials with vanishingly small dielectric permittivity, also known as epsilon-near-zero (ENZ) materials. In contrast to the previously referenced approaches, a single at layer of ENZ-material is expected to provide effcient coupling between free-space radiation and sub-wavelength guiding structures. Here we report the first direct observation of bulk-ENZ-enhanced transmission through a subwavelength slit, accompanied by a theoretical study of this phenomenon. Our study opens the door to multiple practical applications of ENZ materials and ENZ-based photonic systems
    corecore