204 research outputs found
Simulation training approaches in intracranial aneurysm surgery-a systematic review.
BACKGROUND
With the increasing complexity and decreasing exposure to intracranial aneurysm surgery, training and maintenance of the surgical skills have become challenging. This review elaborated on simulation training for intracranial aneurysm clipping.
METHODS
A systematic review was performed according to the PRISMA guidelines to identify studies on aneurysm clipping training using models and simulators. The primary outcome was the identification of the predominant modes of the simulation process, models, and training methods associated with a microsurgical learning curve. The secondary outcomes included assessments of the validation of such simulators and the learning capability from the use of such simulators.
RESULTS
Of the 2068 articles screened, 26 studies met the inclusion criteria. The chosen reports used a wide range of simulation approaches including ex vivo methods (n = 6); virtual reality (VR) platforms (n = 11); and static (n = 6) and dynamic (n = 3) 3D-printed aneurysm models (n = 6). The ex vivo training methods have limited availability, VR simulators lack haptics and tactility, while 3D static models lack important microanatomical components and the simulation of blood flow. 3D dynamic models including pulsatile flow are reusable and cost-effective but miss microanatomical components.
CONCLUSIONS
The existing training methods are heterogenous and do not realistically simulate the complete microsurgical workflow. The current simulations lack certain anatomical features and crucial surgical steps. Future research should focus on developing and validating a reusable, cost-effective training platform. No systematic validation method exists for the different training models, so there is a need to build homogenous assessment tools and validate the role of simulation in education and patient safety
3D-printed head model in patient's education for micro-neurosurgical aneurysm clipping procedures.
BACKGROUND
Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and 3D reconstruction from Digital Subtraction Angiography (DSA) are currently used in clinical consultations for patients diagnosed with intracranial aneurysms; however, they have limitations in helping patients understand the disease and possible treatments. This study investigates the use of a 3D-printed model of the patients' neurosurgical anatomy and vascular pathology as an educational tool in outpatient clinics.
METHODS
A 3D-printed model of a middle cerebral artery aneurysm was created for use during patient consultations to discuss microsurgical treatment of unruptured cerebral aneurysms. In total, 38 patients and 5 neurosurgeons were included in the study. After the consultation, the patients and neurosurgeons received a questionnaire to assess the effectiveness of the 3D-printed model as an educational tool.
RESULTS
The 3D model improved the patients' understanding of the diagnosis, the aneurysm's relationship to the parent artery; the treatment process as well as the risks if left untreated. The patients found the 3D model to be an interesting tool (97%). The neurosurgeons were satisfied with the 3D-printed model as a patient encounter tool, they found the model effective during consultation (87%) and better than the conventional education tools used during consultations (97%).
CONCLUSION
Using a 3D model improves communication, enhances the patient's understanding of the pathology and its treatment and potentially facilitates the informed consent process in patients undergoing intracranial aneurysm surgery
Training Performance Assessment for Intracranial Aneurysm Clipping Surgery Using a Patient-Specific Mixed-Reality Simulator: A Learning Curve Study.
BACKGROUND AND OBJECTIVES
The value of simulation-based training in medicine and surgery has been widely demonstrated. This study investigates the introduction and use of a new mixed-reality neurosurgical simulator in aneurysm clipping surgery, focusing on the learning curve and performance improvement.
METHODS
Five true-scale craniotomy head models replicating patient-specific neuroanatomy, along with a mixed-reality simulator, a neurosurgical microscope, and a set of microsurgical instruments and clips, were used in the operation theater to simulate aneurysm microsurgery. Six neurosurgical residents participated in five video-recorded simulation sessions over 4 months. Complementary learning modalities were implemented between sessions. Thereafter, three blinded analysts reported on residents' use of the microscope, quality of manipulation, aneurysm occlusion, clipping techniques, and aneurysm rupture. Data were also captured regarding training time and clipping attempts.
RESULTS
Over the course of training, clipping time and number of clipping attempts decreased significantly (P = .018, P = .032) and the microscopic skills improved (P = .027). Quality of manipulation and aneurysm occlusion scoring improved initially although the trend was interrupted because the spacing between sessions increased. Significant differences in clipping time and attempts were observed between the most and least challenging patient models (P = .005, P = .0125). The least challenging models presented higher rates of occlusion based on indocyanine green angiography evaluation from the simulator.
CONCLUSION
The intracranial aneurysm clipping learning curve can be improved by implementing a new mixed-reality simulator in dedicated training programs. The simulator and the models enable comprehensive training under the guidance of a mentor
Monitoring the Depth of Anaesthesia
One of the current challenges in medicine is monitoring the patients’ depth of general anaesthesia (DGA). Accurate assessment of the depth of anaesthesia contributes to tailoring drug administration to the individual patient, thus preventing awareness or excessive anaesthetic depth and improving patients’ outcomes. In the past decade, there has been a significant increase in the number of studies on the development, comparison and validation of commercial devices that estimate the DGA by analyzing electrical activity of the brain (i.e., evoked potentials or brain waves). In this paper we review the most frequently used sensors and mathematical methods for monitoring the DGA, their validation in clinical practice and discuss the central question of whether these approaches can, compared to other conventional methods, reduce the risk of patient awareness during surgical procedures
Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics
The assessment of oocyte quality in human in vitro fertilization (IVF) is getting increasing attention from embryologists. Oocyte selection and the identification of the best oocytes, in fact, would help to limit embryo overproduction and to improve the results of oocyte cryostorage programs. Follicular fluid (FF) is easily available during oocyte pick-up and theorically represents an optimal source on non-invasive biochemical predictors of oocyte quality. Unfortunately, however, the studies aiming to find a good molecular predictor of oocyte quality in FF were not able to identify substances that could be used as reliable markers of oocyte competence to fertilization, embryo development and pregnancy. In the last years, a well definite trend toward passing from the research of single molecular markers to more complex techniques that study all metabolites of FF has been observed. The metabolomic approach is a powerful tool to study biochemical predictors of oocyte quality in FF, but its application in this area is still at the beginning. This review provides an overview of the current knowledge about the biochemical predictors of oocyte quality in FF, describing both the results coming from studies on single biochemical markers and those deriving from the most recent studies of metabolomic
Estradiol and testosterone concentrations in follicular fluid as criteria to discriminate between mature and immature oocytes
Increased sensitivity and accuracy of steroid hormone determinations with capillary GC and flame thermionic detection
- …
