282 research outputs found

    Using small-angle X-ray scattering to investigate the compaction behaviour of a granulated clay

    Get PDF
    The compaction behaviour of a commercial granulated clay (magnesium aluminium smectite, gMgSm) was investigated using macroscopic pressure-density measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray microtomography (XμT) and small-angle X-ray scattering (SAXS). This material was studied as a potential compaction excipient for pharmaceutical tabletting, but also as a model system demonstrating the capabilities of SAXS for investigating compaction in other situations. Bulk compaction measurements showed that the gMgSm was more difficult to compact than polymeric pharmaceutical excipients such as spheronised microcrystalline cellulose (sMCC), corresponding to harder granules. Moreover, in spite of using lubrication (magnesium stearate) on the tooling surfaces, rather high ejection forces were observed, which may cause problems during commercial tabletting, requiring further amelioration. Although the compacted gMgSm specimens were more porous, however, they still exhibited acceptable cohesive strengths, comparable to sMCC. Hence, there may be scope for using granular clay as one component of a tabletting formulation. Following principles established in previous work, SAXS revealed information concerning the intragranular structure of the gMgSm and its response to compaction. The results showed that little compression of the intragranular morphology occurred below a relative density of 0 · 6, suggesting that granule rearrangements or fragmentation were the dominant mechanisms during this stage. By contrast, granule deformation became considerably more important at higher relative density, which also coincided with a significant increase in the cohesive strength of compacted specimens. Spatially-resolved SAXS data was also used to investigate local variations in compaction behaviour within specimens of different shape. The results revealed the expected patterns of density variations within flat-faced cylindrical specimens. Significant variations in density, the magnitude of compressive strain and principal strain direction were also revealed in the vicinity of a debossed feature (a diametral notch) and within bi-convex specimens. The variations in compaction around the debossed notch, with a small region of high density below and low density along the flanks, appeared to be responsible for extensive cracking, which could also cause problems in commercial tabletting

    Using acoustic velocities and microimaging to probe microstructural changes caused by thermal shocking of tight rocks

    Get PDF
    Introduction: Large scale, Earth processes and bulk rock properties are influenced by underpinning, dynamic, microstructures within rocks and geomaterials. Traditionally, the amount of porosity has been considered the primary control on important bulk rock properties like seismic wave velocities (Vp and Vs) and permeability. However, in tight rocks, velocity and permeability (k) can change substantially despite small changes in the amount of porosity during cracking. Therefore, other microstructural features inherent to given lithologies, such as heterogeneity and anisotropy in mineral properties are considered as factors controlling these bulk rock properties. Understanding which microstructural features control Vp, Vs, and permeability in tight rocks is useful in applications like enhanced geothermal systems (EGS), where thermal shocking is used to increase permeability. Thermal shocking involves injecting surface water into the subsurface to cool mineral crystals, induce contraction of crystals, and cause thermal cracking.Methods: We tested three tight lithologies with unique microstructures; granodiorite (SWG), basalt (PTB), and carbonate (MSA). We simulated thermal shocking by slowly heating samples to 350°C and then quenching them. We chose a temperature of 350°C because thermal shocking at this temperature is not well documented in literature, and this temperature is relevant to EGS. Using time-lapse microimaging, we assessed how thermal cracking occurs in each lithology and explored how thermal cracks influence connected porosity, Vp, Vs, and k.Results: Microimaging shows extensive cracking in the SWG and MSA lithologies, and little to no cracking in PTB with thermal shocking treatment. Vp and Vs became more pressure sensitive, and elastic moduli decreased with treatment for all lithologies. This may be caused by reduced stiffness between mineral crystal boundaries with treatment.Discussion: Lithologies with minerals that have anisotropy of or a wide range in thermal conductivity and/or thermal expansion coefficients can have increased thermal cracking. In thermally shocked SWG and MSA, Vp and Vs are good indicators of thermal cracking and k increases, but less so in PTB. Lithologies like PTB may require multiple thermal shock stimulations to increase permeability. Our results highlight how micro-scale changes influence bulk rock properties and when we can monitor permeability increases and microscale thermal cracking with Vp and Vs

    Time-lapse characterization of hydrothermal seawater and microbial interactions with basaltic tephra at Surtsey Volcano

    Get PDF
    A new International Continental Drilling Program (ICDP) project will drill through the 50-yearoldedifice of Surtsey Volcano, the youngest of the Vestmannaeyjar Islands along the south coast of Iceland, to perform interdisciplinary time-lapse investigations of hydrothermal and microbial interactions with basaltic tephra. The volcano, created in 1963–1967 by submarine and subaerial basaltic eruptions, was first drilled in 1979. In October 2014, a workshop funded by the ICDP convened 24 scientists from 10 countries for 3 and a half days on Heimaey Island to develop scientific objectives, site the drill holes, and organize logistical support. Representatives of the Surtsey Research Society and Environment Agency of Iceland also participated. Scientific themes focus on further determinations of the structure and eruptive processes of the type locality of Surtseyan volcanism, descriptions of changes in fluid geochemistry and microbial colonization of the subterrestrial deposits since drilling 35 years ago, and monitoring the evolution of hydrothermal and biological processes within the tephra deposits far into the future through the installation of a Surtsey subsurface observatory. The tephra deposits provide a geologic analog for developing specialty concretes with pyroclastic rock and evaluating their long-term performance under diverse hydrothermal conditions

    Dynamic Evolution of Permeability in Response to Chemo‐Mechanical Compaction

    Get PDF
    Pressure‐solution creep is an important fluid‐mediated deformation mechanism, causing chemo‐mechanical transformations and porosity and permeability changes in rocks. The presence of phyllosilicates, in particular, has previously been hypothesized to further reduce porosity and pore connectivity. Nevertheless, a full characterization of the spatio‐temporal evolution of permeability during this process has yet to be reported. A pure NaCl aggregate and a mixture of NaCl and biotite were deformed through pressure‐solution creep while monitoring their microstructural evolution through computed X‐ray micro‐tomography. The evolution of permeability and fluid velocity of the samples were computed by using the pore geometries from the X‐ray micro‐tomography as input for the Lattice‐Boltzmann modeling. The results indicate that, as deformation proceeds, porosity and permeability decrease in both samples. In the salt ‐biotite sample pressure solution creep causes the formation of a compaction band perpendicular to the direction of loading, forming a barrier for permeability. Along the other two directions, pore connectivity and permeability are retained in the marginal salt layers, making the sample strongly anisotropic. The presence of biotite controls the way pore coordination number evolves and hence, the connectivity of the pathways. Biotite flakes create an enhanced porosity decrease leading to compaction and reduction of pore connectivity. This reduction in porosity affects local stresses and local contact areas, reducing over time the driving force. According to a texture‐porosity process, the reduction in porosity causes salt ions to dissolve in the marginal salt and precipitate within the biotite‐bearing layer, where the bulk volume of salt grains increases over time
    corecore