846 research outputs found

    Innate immune response in avian macrophages elicited by Chlamydia psittaci

    Get PDF
    Chlamydia psittaci is a gram-negative, obligate, intracellular bacterium, which mainly infects birds and mammals. Not much is known about innate immunity initiated by C. psittaci. The focus of the present study is on chicken macrophage activation and expression of cytokine, chemokine, caspase-1, iNOS and TLR genes during the early phase and mid-cycle period of the developmental cycle of the highly virulent C. psittaci strain 92/1293. C. psittaci significantly augmented the transcript levels for all genes investigated, especially during the mid-cycle period. These results demonstrate a robust innate immune response of chicken macrophages initiated by a C. psittaci infection

    Chlamydial infection from outside to inside

    Get PDF
    Chlamydia are obligate intracellular bacteria, characterized by a unique biphasic developmental cycle. Specific interactions with the host cell are crucial for the bacteria's survival and amplification because of the reduced chlamydial genome. At the start of infection, pathogen-host interactions are set in place in order for Chlamydia to enter the host cell and reach the nutrient-rich peri-Golgi region. Once intracellular localization is established, interactions with organelles and pathways of the host cell enable the necessary hijacking of host-derived nutrients. Detailed information on the aforementioned processes will increase our understanding on the intracellular pathogenesis of chlamydiae and hence might lead to new strategies to battle chlamydial infection. This review summarizes how chlamydiae generate their intracellular niche in the host cell, acquire host-derived nutrients in order to enable their growth and finally exit the host cell in order to infect new cells. Moreover, the evolution in the development of molecular genetic tools, necessary for studying the chlamydial infection biology in more depth, is discussed in great detail

    Non-mammalian model organisms in epigenetic research : an overview

    Get PDF
    Recent advances in sequencing technology and genome editing tools had an indisputably enormous impact on our understanding of complex biological pathways and their genetic and epigenetic regulation. Unlike genetics, a study of phenotype development as a result of genotypic diversity, epigenetics studies the emergence of (possibly heritable) phenotypic assortment from one DNA sequence. Epigenetic modifications (i.e., DNA methylation, histone tail modifications, noncoding RNA interference, and many others) are diverse and can bring an additional layer of complexity to phenotype development and it's inheritance. Still, today, detailed mechanisms behind the development of epigenetic marks, their interaction, and their role in transgenerational inheritance of phenotypes are not fully understood. Therefore, chromatin biology and epigenetic research have a rich history of chasing discoveries in a variety of model organisms, including yeast, worms, flies, fish, and plants. Use of these models has opened numerous new avenues for investigation in the field. In the coming future, model organisms will continue to serve as an inseparable part of studies related to interpreting complex genomic and epigenomic data, gene–protein functional relationship, various diseases pathways, aging, and many others. Use of the model organism will provide insights not only into novel genetic players but also the profound impact of epigenetics on phenotype development. Here, we present a brief overview of the most commonly used nonmammalian model organism (i.e., fruit fly, nematode worm, zebrafish, and yeast) as potential experimental systems for epigenetic studies

    Potential immunosuppressive effects of Escherichia coli O157:H7 experimental infection on the bovine host

    Get PDF
    Background: Enterohaemorrhagic Escherichia coli (EHEC), like E. coli O157:H7 are frequently detected in bovine faecal samples at slaughter. Cattle do not show clinical symptoms upon infection, but for humans the consequences after consuming contaminated beef can be severe. The immune response against EHEC in cattle cannot always clear the infection as persistent colonization and shedding in infected animals over a period of months often occurs. In previous infection trials, we observed a primary immune response after infection which was unable to protect cattle from reinfection. These results may reflect a suppression of certain immune pathways, making cattle more prone to persistent colonization after re-infection. To test this, RNA-Seq was used for transcriptome analysis of recto-anal junction tissue and ileal Peyer's patches in nine Holstein-Friesian calves in response to a primary and secondary Escherichia coli O157: H7 infection with the Shiga toxin (Stx) negative NCTC12900 strain. Non-infected calves served as controls. Results: In tissue of the recto-anal junction, only 15 genes were found to be significantly affected by a first infection compared to 1159 genes in the ileal Peyer's patches. Whereas, re-infection significantly changed the expression of 10 and 17 genes in the recto-anal junction tissue and the Peyer's patches, respectively. A significant downregulation of 69 immunostimulatory genes and a significant upregulation of seven immune suppressing genes was observed. Conclusions: Although the recto-anal junction is a major site of colonization, this area does not seem to be modulated upon infection to the same extent as ileal Peyer's patches as the changes in gene expression were remarkably higher in the ileal Peyer's patches than in the recto-anal junction during a primary but not a secondary infection. We can conclude that the main effect on the transcriptome was immunosuppression by E. coli O157: H7 (Stx(-)) due to an upregulation of immune suppressive effects (7/12 genes) or a downregulation of immunostimulatory effects (69/94 genes) in the ileal Peyer's patches. These data might indicate that a primary infection promotes a re-infection with EHEC by suppressing the immune function

    Avian chlamydiosis

    Get PDF
    B

    Structure-functional activity relationship of β-glucans from the perspective of immunomodulation : a mini-review

    Get PDF
    β-Glucans are a heterogeneous group of glucose polymers with a common structure comprising a main chain of β-(1,3) and/or β-(1,4)-glucopyranosyl units, along with side chains with various branches and lengths. β-Glucans initiate immune responses via immune cells, which become activated by the binding of the polymer to specific receptors. However, β-glucans from different sources also differ in their structure, conformation, physical properties, binding affinity to receptors, and thus biological functions. The mechanisms behind this are not fully understood. This mini-review provides a comprehensive and up-to-date commentary on the relationship between β-glucans' structure and function in relation to their use for immunomodulation

    Enterohemorrhagic Escherichia coli with particular attention to the German outbreak strain O104:H4

    Get PDF
    This review deals with the epidemiology and ecology of enterohemorrhagic Escherichia coli (EHEC), a subset of the verocytotoxigenic Escherichia coli (VTEC), and subsequently discusses its public health concern. Attention is also given to the outbreak strain O104:H4, which has been isolated as causative agent of the second largest outbreak of the hemolytic uremic syndrome worldwide, which started in Germany in May 2011. This outbreak strain is not an EHEC as such but possesses an unusual combination of EHEC and enteroaggregative E. coli (EAggEC) virulence properties
    corecore