25 research outputs found

    Three-dimensional P-wave velocity structure on the shallow part of the Central Costa Rican Pacific margin from Local Earthquake Tomography using off- and onshore networks

    Get PDF
    The Central Costa Rican Pacific margin is characterized by a high-seismicity rate, coincident with the subduction of rough-relief ocean floor and has generated earthquakes with magnitude up to seven in the past. We inverted selected P-wave traveltimes from earthquakes recorded by a combined on- and offshore seismological array deployed during 6 months in the area, simultaneously determining hypocentres and the 3-D tomographic velocity structure on the shallow part of the subduction zone (<70 km). The results reflect the complexity associated to subduction of ocean-floor morphology and the transition from normal to thickened subducting oceanic crust. The subducting slab is imaged as a high-velocity perturbation with a band of low velocities (LVB) on top encompassing the intraslab seismicity deeper than ∼30 km. The LVB is locally thickened by the presence of at least two subducted seamounts beneath the margin wedge. There is a general eastward widening of the LVB over a relatively short distance, closely coinciding with the onset of an inverted forearc basin onshore and the appearance of an aseismic low-velocity anomaly beneath the inner forearc. The latter coincides spatially with an area of the subaerial forearc where differential uplift of blocks has been described, suggesting tectonic underplating of eroded material against the base of the upper plate crust. Alternatively, the low velocities could be induced by an accumulation of upward migrating fluids. Other observed velocity perturbations are attributed to several processes taking place at different depths, such as slab hydration through outer rise faulting, tectonic erosion and slab dehydration

    Sustained Change: Design Speculations on the Performance of Fallow-Scapes in Time along the Erie Canal National Heritage Corridor, (ECNHC), New York

    No full text
    The paper explores the potential for adaptive mitigation at the Montezuma Wildlife Refuge, Seneca Falls, NY, USA, and surrounds, focusing on landscapes along the historic Erie Canal that inadvertently lowered the water table and shrunk adjacent wetlands. Now the Erie Canal National Heritage Corridor (ECNHC), Montezuma, NY, USA, the canal, and surrounds lack a clear identity but have the potential to be repurposed as green infrastructure to support climate mitigation through the application of natural climate solutions, namely reforestation. Reforestation has been shown to produce the highest potential performance for carbon sequestration, along with a multitude of co-benefits. However, most studies assessing capacity for climate mitigation using nature-based approaches operate at a high level via remote data and do not test hypotheses at smaller scales that require groundtruthing data, parcel-by parcel approaches, and an understanding of landowner values. The initial research question is: can landscape architecture design research contribute to a higher performance of secondary forests and non-productive farmland (fallow lands) for carbon sequestration, while at the same time activating economic territories and improving their landscape qualities? Comparative cartographies are developed to assess secondary forests, including past and future projections. Fallow lands are examined through mapping at various scales, fieldwork, and informal interviews. We find that farmland along the canal has been abandoned over time due to conditions that make farming difficult, such as periodic flooding, ponding of water due to poorly drained soils, and steep drumlin slopes. These same conditions have contributed to a landscape armature&mdash;an assemblage of landscapes including the old canal, barge canal and associated heritage landscapes, abandoned farmlands, and existing forests and wetlands. Secondary forests already existing in the area are high performing in relation to carbon sequestration but may lack climate resilience due to threats such as the emerald ash borer (EAB). Design intervention can help support enhanced sequestration, resilience, and adaptation by introducing unique tree plantings in the form of groves and hedgerows. Sustainability is approached by integrating quantifiable performances of secondary forests with projections of spatial, ecological, and cultural values and the continuing monitoring and management of forests over time. The aim is to build a method to test these lands with designs for tree plantings that reveal their potential for increased carbon sequestration, habitat connectivity, and enriched landscape identity

    Sustained Change: Design Speculations on the Performance of Fallow-Scapes in Time along the Erie Canal National Heritage Corridor, (ECNHC), New York

    No full text
    The paper explores the potential for adaptive mitigation at the Montezuma Wildlife Refuge, Seneca Falls, NY, USA, and surrounds, focusing on landscapes along the historic Erie Canal that inadvertently lowered the water table and shrunk adjacent wetlands. Now the Erie Canal National Heritage Corridor (ECNHC), Montezuma, NY, USA, the canal, and surrounds lack a clear identity but have the potential to be repurposed as green infrastructure to support climate mitigation through the application of natural climate solutions, namely reforestation. Reforestation has been shown to produce the highest potential performance for carbon sequestration, along with a multitude of co-benefits. However, most studies assessing capacity for climate mitigation using nature-based approaches operate at a high level via remote data and do not test hypotheses at smaller scales that require groundtruthing data, parcel-by parcel approaches, and an understanding of landowner values. The initial research question is: can landscape architecture design research contribute to a higher performance of secondary forests and non-productive farmland (fallow lands) for carbon sequestration, while at the same time activating economic territories and improving their landscape qualities? Comparative cartographies are developed to assess secondary forests, including past and future projections. Fallow lands are examined through mapping at various scales, fieldwork, and informal interviews. We find that farmland along the canal has been abandoned over time due to conditions that make farming difficult, such as periodic flooding, ponding of water due to poorly drained soils, and steep drumlin slopes. These same conditions have contributed to a landscape armature—an assemblage of landscapes including the old canal, barge canal and associated heritage landscapes, abandoned farmlands, and existing forests and wetlands. Secondary forests already existing in the area are high performing in relation to carbon sequestration but may lack climate resilience due to threats such as the emerald ash borer (EAB). Design intervention can help support enhanced sequestration, resilience, and adaptation by introducing unique tree plantings in the form of groves and hedgerows. Sustainability is approached by integrating quantifiable performances of secondary forests with projections of spatial, ecological, and cultural values and the continuing monitoring and management of forests over time. The aim is to build a method to test these lands with designs for tree plantings that reveal their potential for increased carbon sequestration, habitat connectivity, and enriched landscape identity.</jats:p

    Approximation algorithms for the square min-sum bin packing problem

    Full text link
    In this work, we study the square min-sum bin packing problem (SMSBPP), where a list of square items has to be packed into indexed square bins of dimensions 1×11 \times 1 with no overlap between the areas of the items. The bins are indexed and the cost of packing each item is equal to the index of the bin in which it is placed in. The objective is to minimize the total cost of packing all items, which is equivalent to minimizing the average cost of items. The problem has applications in minimizing the average time of logistic operations such as cutting stock and delivery of products. We prove that classic algorithms for two-dimensional bin packing that order items in non-increasing order of size, such as Next Fit Decreasing Height or Any Fit Decreasing Height heuristics, can have an arbitrarily bad performance for SMSBPP. We, then, present a 5322\frac{53}{22}-approximation and a PTAS for the problem.Comment: 13 pages, 6 figures, submitted to Journal of Schedulin

    Sharing a River to Save It – an Experimental Course in “Wicked Problem-Solving”

    No full text
    What happens when a large dam is breached? Historically, eastern rivers were seasonally inundated with millions of fish, migrating upstream to spawn in an amazing display of fecundity. Dams provide power but block these fish migrations. Last year only 8 American shad made it past the dams on the lower Susquehanna to the spawning grounds upriver (the target was 1,000,000). As we seek “clean” sources of power, viable drinking water supplies, surface water for industry, recreational amenities, sustainable food supplies and healthy ecological systems, how might we obtain a better balance among competing and sometimes conflicting needs and desires? This poster describes a “thought experiment course,” taught simultaneously at two universities. We are trying to re-imagine humans’ use of rivers that could involve “thinking the unthinkable,” and ask whether it would be possible to remove the Conowingo Dam, the lowermost dam on the Susquehanna, for ecological restoration. However, we realize that foregone hydropower will need at least partial replacement. We have begun to discuss the concept of “shared rivers,” whereby if dams are removed, alternative energy installations as well as habitat restorations can be designed in place of the dams. One advantage of putting in alternative energy at these sites is that the transmission infrastructure is already in place. However, serious issues have to be considered beyond power, among them the fact that Conowingo Reservoir is nearly at sediment capacity. Together with students ranging from engineering, to biology, to landscape architecture, to regional planning, we are studying this problem by gathering data, getting expert input, and creating designs for possible scenarios involving slow dam removal, sediment dewatering and stabilization, and alternative energy. The ultimate goal of such a removal would be to restore connectivity of the Susquehanna River watershed with the Chesapeake Bay and ultimately the Atlantic Ocean

    Effect of chickpea (Cicer arietinum L.) germination on the major globulin content and in vitro digestibility

    Get PDF
    A germinação das sementes de grão-de-bico foi acompanhada por um período de 6 dias, no qual pequenas variações nos teores de nitrogênio e globulina total foram registradas. A globulina majoritária (tipo 11 S) apresentou maiores variações após o quarto dia de germinação. A natureza e distribuição da fração globulina majoritária isolada na cromatografia em Sepharose CL-6B mostrou pequenas modificações ao final do período de germinação. A eletroforese em gel de poliacrilamida com dodecilssulfato de sódio do pico eluído na cromatografia em Sepharose CL-6B demonstra modificações nas bandas de proteínas entre os pesos moleculares de 20 e 30 kDa e acima de 60 kDa, indicando degradação protéica durante o período. Atividade proteolítica foi detectada na fração albumina da semente que aumentou até o quarto dia, seguido de queda até o sexto dia de germinação, quando da utilização de globulina total isolada da semente e caseína como substratos. Farinha de grão-de-bico, frações albumina e globulina total isoladas não apresentaram aumento na digestibilidade in vitro; entretanto, a fração globulina majoritária isolada foi mais suscetível à hidrólise após germinação.Chickpea seed germination was carried out over a period of 6 days. Little variation in the nitrogen and total globulin content was observed. The major globulin (11 S type) showed higher variation after the 4th day of germination. The elution behaviour and distribution of the isolated major globulin fraction on Sepharose CL-6B chromatography showed little modification at the end of germination. on SDS-PAGE the peak eluted from Sepharose CL-6B showed changes in protein bands between 20 and 30 kDa and above 60 kDa, indicating protein degradation during the period. Proteolytic activity was detected in the albumin fraction of the seeds, which increased up to the fourth and then decreased up to the sixth day, when isolated chickpea total globulin and casein were used as substrates. Chickpea flour, isolated albumin and total globulin fractions did not show an increase for in vitro digestibility; however, the isolated major globulin was more susceptible to hydrolysis after germination
    corecore