1,777 research outputs found

    Decay of protons and neutrons induced by acceleration

    Get PDF
    We investigate the decay of accelerated protons and neutrons. Calculations are carried out in the inertial and coaccelerated frames. Particle interpretation of these processes are quite different in each frame but the decay rates are verified to agree in both cases. For sake of simplicity our calculations are performed in a two-dimensional spacetime since our conclusions are not conceptually affected by this.Comment: 18 pages (REVTEX), 3 figure

    Ultra-faint high-redshift galaxies in the Frontier Fields

    Full text link
    By combining cosmological simulations with Frontier Fields project lens models we find that, in the most optimistic case, galaxies as faint as m3334m \approx 33 - 34 (AB magnitude at 1.6μm1.6 \rm \mu m) can be detected in the Frontier Fields. Such faint galaxies are hosted by dark matter halos of mass 109M\sim10^9 M_\odot and dominate the ionizing photon budget over currently observed bright galaxies, thus allowing for the first time the investigation of the dominant reionization sources. In addition, the observed number of these galaxies can be used to constrain the role of feedback in suppressing star formation in small halos: for example, if galaxy formation is suppressed in halos with circular velocity vc<50v_c < 50 km s1^{-1}, galaxies fainter than m=31m=31 should not be detected in the FFs.Comment: 5 pages, 7 figures, accepted for publication in MNRAS Letter

    The assembly of massive galaxies from NIR observations of the Hubble Deep Field South

    Full text link
    We use a deep K(AB)<25 galaxy sample in the Hubble Deep Field South to trace the evolution of the cosmological stellar mass density from z~ 0.5 to z~3. We find clear evidence for a decrease of the average stellar mass density at high redshift, 2<z<3.2, that is 15^{+25}_{-5}% of the local value, two times higher than what observed in the Hubble Deep Field North. To take into account for the selection effects, we define a homogeneous subsample of galaxies with 10^{10}M_\odot \leq M_* \leq 10^{11}M_\odot: in this sample, the mass density at z>2 is 20^{+20}_{-5} % of the local value. In the mass--limited subsample at z>2, the fraction of passively fading galaxies is at most 25%, although they can contribute up to about 40% of the stellar mass density. On the other hand, star--forming galaxies at z>2 form stars with an average specific rate at least ~4 x10^{-10} yr1^{-1}, 3 times higher than the z<~1 value. This implies that UV bright star--forming galaxies are substancial contributors to the rise of the stellar mass density with cosmic time. Although these results are globally consistent with Λ\Lambda--CDM scenarios, the present rendition of semi analytic models fails to match the stellar mass density produced by more massive galaxies present at z>2.Comment: Accepted for publication on ApJLetter

    The Great Observatories Origins Deep Survey - VLT/VIMOS Spectroscopy in the GOODS-South Field: Part II

    Full text link
    We present the full data set of the VIMOS spectroscopic campaign of the ESO/GOODS program in the CDFS, which complements the FORS2 ESO/GOODS spectroscopic campaign. The GOODS/VIMOS spectroscopic campaign is structured in two separate surveys using two different VIMOS grisms. The VIMOS Low Resolution Blue (LR-Blue) and Medium Resolution (MR) orange grisms have been used to cover different redshift ranges. The LR-Blue campaign is aimed at observing galaxies mainly at 1.8<z<3.5, while the MR campaign mainly aims at galaxies at z<1 and Lyman Break Galaxies (LBGs) at z>3.5. The full GOODS/VIMOS spectroscopic campaign consists of 20 VIMOS masks. This release adds 8 new masks to the previous release (12 masks, Popesso et al. 2009). In total we obtained 5052 spectra, 3634 from the 10 LR-Blue masks and 1418 from the 10 MR masks. A significant fraction of the extracted spectra comes from serendipitously observed sources: ~21% in the LR-Blue and ~16% in the MR masks. We obtained 2242 redshifts in the LR-Blue campaign and 976 in the MR campaign for a total success rate of 62% and 69% respectively, which increases to 66% and 73% if only primary targets are considered. The typical redshift uncertainty is estimated to be ~0.0012 (~255 km/s) for the LR-Blue grism and ~0.00040 (~120 km/s) for the MR grism. By complementing our VIMOS spectroscopic catalog with all existing spectroscopic redshifts publicly available in the CDFS, we compiled a redshift master catalog with 7332 entries, which we used to investigate large scale structures out to z~3.7. We produced stacked spectra of LBGs in a few bins of equivalent width (EW) of the Ly-alpha and found evidence for a lack of bright LBGs with high EW of the Ly-alpha. Finally, we obtained new redshifts for 12 X-ray sources of the CDFS and extended-CDFS.Comment: 22 pages, 20 figures, accepted for publication on Astronomy and Astrophysics, catalogs and data products are available at http://archive.eso.org/cms/eso-data/data-packages/goods-vimos-spectroscopy-data-release-version-2.0/, for ESO-GOODS related material consult http://www.eso.org/sci/activities/projects/goods

    Clustering at high redshift

    Full text link
    The addition of deep near infrared images to the database provided by the HDF-S WFPC2 is essential to monitor the SEDs of the objects on a wide baseline and address a number of key issues including the total stellar content of baryonic mass, the effects of dust extinction, the dependence of morphology on the rest frame wavelength, the photometric redshifts, the detection and nature of extremely red objects (EROs). For these reasons deep near infrared images were obtained with the ISAAC instrument at the ESO VLT in the Js, H and Ks bands reaching, respectively, 23.5, 22.0, 22.0 limiting Vega-magnitude. A multi-color (F300, F450, F606, F814, Js, H, Ks) photometric catalog of the HDF-S has been produced. Photometric redshifts have been generated both fitting templates to the observed SEDs and with neural network techniques. Spectroscopic observations of the 9 candidates with I_AB <24.25 have confirmed all of them to be galaxies with 2<z<3.5. The photometric redshifts for all the galaxies brighter than I_AB< 27.5 have been used to study the evolution of galaxy clustering in the interval 0<z<4.5.Comment: 2 pages Latex, To appear in the proceedings of "The mass of galaxies at low and high redshift", Venice, Oct 24-26, 2001,eds. R. Bender and A. Renzini (ESO Astrophysics Symposia, Springer-Verlag

    Measuring the Redshift Evolution of Clustering: the Hubble Deep Field South

    Get PDF
    We present an analysis of the evolution of galaxy clustering in the redshift interval 0<z<4.5 in the HDF-S. The HST optical data are combined with infrared ISAAC/VLT observations, and photometric redshifts are used for all the galaxies brighter than I_AB<27.5. The clustering signal is obtained in different redshift bins using two different approaches: a standard one, which uses the best redshift estimate of each object, and a second one, which takes into account the redshift probability function of each object. This second method makes it possible to improve the information in the redshift intervals where contamination from objects with insecure redshifts is important. With both methods, we find that the clustering strength up to z~3.5 in the HDF-S is consistent with the previous results in the HDF-N. While at redshift lower than z~1 the HDF galaxy population is un/anti-biased (b<1) with respect to the underlying dark matter, at high redshift the bias increases up to b~2-3, depending on the cosmological model. These results support previous claims that, at high redshift, galaxies are preferentially located in massive haloes, as predicted by the biased galaxy formation scenario. The impact of cosmic errors on our analyses has been quantified, showing that errors in the clustering measurements in the HDF surveys are indeed dominated by shot-noise in most regimes. Future observations with instruments like the ACS on HST will improve the S/N by at least a factor of two and more detailed analyses of the errors will be required. In fact, pure shot-noise will give a smaller contribution with respect to other sources of errors, such as finite volume effects or non-Poissonian discreteness effects.Comment: 17 pages Latex, with 12 PostScript figures, Accepted for publication in MNRA

    Quantum versus classical instability of scalar fields in curved backgrounds

    Get PDF
    General-relativistic stable spacetimes can be made unstable under the presence of certain nonminimally coupled free scalar fields. In this paper, we analyze the evolution of linear scalar-field perturbations in spherically symmetric spacetimes and compare the classical stability analysis with a recently discussed quantum field one. In particular, it is shown that vacuum fluctuations lead to natural seeds for the unstable phase, whereas in the classical framework the presence of such seeds in the initial conditions must be assumed.Comment: 5 pages, 1 figure; condensed and revised version matching published on

    Instability of nonminimally coupled scalar fields in the spacetime of slowly rotating compact objects

    Get PDF
    Nonminimally coupled free scalar fields may be unstable in the spacetime of compact objects. Such instability can be triggered by classical seeds or, more simply, by quantum fluctuations giving rise to the so-called {\em vacuum awakening effect}. Here, we investigate how the parameter space which characterizes the instability is affected when the object gains some rotation. For this purpose, we focus on the stability analysis of nonminimally coupled scalar fields in the spacetime of slowly spinning matter shells.Comment: 11 pages, 6 figure

    Can the intergalactic medium cause a rapid drop in Lyman alpha emission at z>6?

    Get PDF
    The large cross-section of the Lyman alpha (Lya) line makes it a sensitive probe of the ionization state of the intergalactic medium (IGM). Here we present the most complete study to date of the IGM Lya opacity, and its application to the redshift evolution of the 'Lya fraction', i.e. the fraction of color-selected galaxies with a detectable Lya emission line. We use a tiered approach, which combines large-scale semi-numeric simulations of reionization with moderate-scale hydrodynamic simulations of the ionized IGM. This allows us to simultaneously account for evolution in both: (i) the opacity from an incomplete (patchy) reionization, parameterized by the filling factor of ionized regions, Q_HII; and (ii) the opacity from self-shielded systems in the ionized IGM, parameterized by the average photo-ionization rate inside HII regions, \Gamma. In contrast to recent empirical models, attenuation from patchy reionization has a unimodal distribution along different sightlines, while attenuation from self-shielded systems is more bimodal. We quantify the average IGM transmission in our (Q_HII, \Gamma) parameter space, which can easily be used to interpret new data sets. Using current observations, we predict that the Lya fraction cannot drop by more than a factor of ~2 with IGM attenuation alone, even for HII filling factors as low as Q_HII>0.1. Larger changes in the Lya fraction could result from a co-evolution with galaxy properties. Marginalizing over \Gamma, we find that current observations constrain Q_HII < 0.6 at z=7 [68% confidence level (C.L.)]. However, all of our parameter space is consistent with observations at 95% C.L., highlighting the need for larger observational samples at z >= 6.Comment: 12 pages, 10 figures, MNRAS submitte
    corecore