2,035 research outputs found
Spinor Algebras and Extended Superconformal Algebras
We consider supersymmetry algebras in arbitrary spacetime dimension and
signature. Minimal and maximal superalgebras are given for single and extended
supersymmetry. It is seen that the supersymmetric extensions are uniquely
determined by the properties of the spinor representation, which depend on the
dimension mod 8 and the signature mod 8 of spacetime.Comment: Talks presented by the authors at the "Second International Symposium
on Quantum Theory and Symmetries", Cracow 2001. LaTeX, 10 page
Note on Self-Duality and the Kodama State
An interesting interplay between self-duality, the Kodama (Chern-Simons)
state and knot invariants is shown to emerge in the quantum theory of an
Abelian gauge theory. More precisely, when a self-dual representation of the
CCR is chosen, the corresponding vacuum in the Schroedinger representation is
precisely given by the Kodama state. Several consequences of this construction
are explored.Comment: 4 pages, no figures. References and discussion added. Final version
to appear in PR
Deformation Quantization of Coadjoint Orbits
A method for the deformation quantization of coadjoint orbits of semisimple
Lie groups is proposed. It is based on the algebraic structure of the orbit.
Its relation to geometric quantization and differentiable deformations is
explored.Comment: Talk presented at the meeting "Noncommutative geometry and Hopf
algebras in Field Theory and Particle Physics", Torino, 199
SU(2) Poisson-Lie T duality
Poisson-Lie target space duality is a framework where duality transformations
are properly defined. In this letter we investigate the pair of sigma models
defined by the double SO(3,1) in the Iwasawa decomposition.Comment: 12 pages, 1 figur
Information is Not Lost in the Evaporation of 2-dimensional Black Holes
We analyze Hawking evaporation of the Callen-Giddings-Harvey-Strominger
(CGHS) black holes from a quantum geometry perspective and show that
information is not lost, primarily because the quantum space-time is
sufficiently larger than the classical. Using suitable approximations to
extract physics from quantum space-times we establish that: i)future null
infinity of the quantum space-time is sufficiently long for the the past vacuum
to evolve to a pure state in the future; ii) this state has a finite norm in
the future Fock space; and iii) all the information comes out at future
infinity; there are no remnants.Comment: 4 pages, 2 figure
On the deformation quantization of affine algebraic varieties
We compute an explicit algebraic deformation quantization for an affine
Poisson variety described by an ideal in a polynomial ring, and inheriting its
Poisson structure from the ambient space.Comment: AMS-LaTeX, 20 page
Classical and quantum geometrodynamics of 2d vacuum dilatonic black holes
We perform a canonical analysis of the system of 2d vacuum dilatonic black
holes. Our basic variables are closely tied to the spacetime geometry and we do
not make the field redefinitions which have been made by other authors. We
present a careful discssion of asymptotics in this canonical formalism.
Canonical transformations are made to variables which (on shell) have a clear
spacetime significance. We are able to deduce the location of the horizon on
the spatial slice (on shell) from the vanishing of a combination of canonical
data. The constraints dramatically simplify in terms of the new canonical
variables and quantization is easy. The physical interpretation of the variable
conjugate to the ADM mass is clarified. This work closely parallels that done
by Kucha{\v r} for the vacuum Schwarzschild black holes and is a starting point
for a similar analysis, now in progress, for the case of a massless scalar
field conformally coupled to a 2d dilatonic black hole.Comment: 21 pages, latex fil
Unitary representations of super Lie groups and applications to the classification and multiplet structure of super particles
It is well known that the category of super Lie groups (SLG) is equivalent to
the category of super Harish-Chandra pairs (SHCP). Using this equivalence, we
define the category of unitary representations (UR's) of a super Lie group. We
give an extension of the classical inducing construction and Mackey
imprimitivity theorem to this setting. We use our results to classify the
irreducible unitary representations of semidirect products of super translation
groups by classical Lie groups, in particular of the super Poincar\'e groups in
arbitrary dimension. Finally we compare our results with those in the physical
literature on the structure and classification of super multiplets.Comment: 55 pages LaTeX, some corrections added after comments by Prof. Pierre
Delign
Polymer quantization of the free scalar field and its classical limit
Building on prior work, a generally covariant reformulation of free scalar
field theory on the flat Lorentzian cylinder is quantized using Loop Quantum
Gravity (LQG) type `polymer' representations. This quantization of the {\em
continuum} classical theory yields a quantum theory which lives on a discrete
spacetime lattice. We explicitly construct a state in the polymer Hilbert space
which reproduces the standard Fock vacuum- two point functions for long
wavelength modes of the scalar field. Our construction indicates that the
continuum classical theory emerges under coarse graining. All our
considerations are free of the "triangulation" ambiguities which plague
attempts to define quantum dynamics in LQG. Our work constitutes the first
complete LQG type quantization of a generally covariant field theory together
with a semi-classical analysis of the true degrees of freedom and thus provides
a perfect infinite dimensional toy model to study open issues in LQG,
particularly those pertaining to the definition of quantum dynamics.Comment: 58 page
- …
