2,766 research outputs found

    Casimir densities for a plate in de Sitter spacetime

    Full text link
    Wightman function, the vacuum expectation values of the field squared and the energy-momentum tensor are investigated for a scalar field with general curvature coupling parameter in the geometry of a plate in the de Sitter spacetime. Robin boundary condition for the field operator is assumed on the plate. The vacuum expectation values are presented as the sum of two terms. The first one corresponds to the geometry of de Sitter bulk without boundaries and the second one is induced by the presence of the plate. We show that for non-conformal fields the vacuum energy-momentum tensor is non-diagonal with the off-diagonal component corresponding to the energy flux along the direction perpendicular to the plate. In dependence of the parameters, this flux can be either positive or negative. The asymptotic behavior of the field squared, vacuum energy density and stresses near the plate and at large distances is investigated.Comment: 15 pages, 3 figures, figure 1 changed, figure 3 and references added, to appear in Class. Quantum Gra

    Fermionic currents in AdS spacetime with compact dimensions

    Get PDF
    We derive a closed expression for the vacuum expectation value (VEV) of the fermionic current density in a (D+1)-dimensional locally AdS spacetime with an arbitrary number of toroidally compactified Poincare spatial dimensions and in the presence of a constant gauge field. The latter can be formally interpreted in terms of a magnetic flux treading the compact dimensions. In the compact subspace, the field operator obeys quasiperiodicity conditions with arbitrary phases. The VEV of the charge density is zero and the current density has nonzero components along the compact dimensions only. They are periodic functions of the magnetic flux with the period equal to the flux quantum and tend to zero on the AdS boundary. Near the horizon, the effect of the background gravitational field is small and the leading term in the corresponding asymptotic expansion coincides with the VEV for a massless field in the locally Minkowski bulk. Unlike the Minkowskian case, in the system consisting an equal number of fermionic and scalar degrees of freedom, with same masses, charges and phases in the periodicity conditions, the total current density does not vanish. In these systems, the leading divergences in the scalar and fermionic contributions on the horizon are canceled and, as a consequence of that, the charge flux, integrated over the coordinate perpendicular to the AdS boundary, becomes finite. We show that in odd spacetime dimensions the fermionic fields realizing two inequivalent representations of the Clifford algebra and having equal phases in the periodicity conditions give the same contribution to the VEV of the current density. Combining the contributions from these fields, the current density in odd-dimensional C-,P- and T -symmetric models are obtained. As an application, we consider the ground state current density in curved carbon nanotubes.Comment: 22 pages, 6 figures, PACS numbers: 04.62.+v, 03.70.+k, 98.80.-k, 61.46.F

    Casimir effect for parallel plates in de Sitter spacetime

    Full text link
    The Wightman function and the vacuum expectation values of the field squared and of the energy-momentum tensor are obtained, for a massive scalar field with an arbitrary curvature coupling parameter, in the region between two infinite parallel plates, on the background of de Sitter spacetime. The field is prepared in the Bunch-Davies vacuum state and is constrained to satisfy Robin boundary conditions on the plates. For the calculation, a mode-summation method is used, supplemented with a variant of the generalized Abel-Plana formula. This allows to explicitly extract the contributions to the expectation values which come from each single boundary, and to expand the second-plate-induced part in terms of exponentially convergent integrals. Several limiting cases of interest are then studied. Moreover, the Casimir forces acting on the plates are evaluated, and it is shown that the curvature of the background spacetime decisively influences the behavior of these forces at separations larger than the curvature scale of de Sitter spacetime. In terms of the curvature coupling parameter and the mass of the field, two very different regimes are realized, which exhibit monotonic and oscillatory behavior of the vacuum expectation values, respectively. The decay of the Casimir force at large plate separation is shown to be power-law (monotonic or oscillating), with independence of the value of the field mass.Comment: 22 pages, 4 figures, added figures for a massless field, added reference, added discussions and comments on thermal effect

    Peculiarities of a Colloidal Polysaccharide of Newly Isolated Iron Oxidizing Bacteria in Armenia

    Full text link
    Microorganisms belonging to different systematic and physiological groups produce various intra- and extracellular polysaccharides, which both play an important role in the life of microorganisms and have great practical application. Iron and sulfur oxidizing bacteria produce capsular (EPS) and colloidal polysaccharides. At present the properties and functional role of EPS are well studied. However, the properties of the colloidal polysaccharides produced by iron oxidizing bacteria have not been sufficiently explored. A new iron oxidizing bacteria Leptospirillum ferriphilium CC was isolated from sulfide ores of Armenia. Its morphological and physiological features have been studied. A colloidal polysaccharide has been isolated with the use of an original method developed by the authors, and its physical and chemical properties have been studied. It has been shown that the colloidal polysaccharide consists of three different monomers- glucose, fructose, mannose.. Investigations with a complex method of optical polarization microscopy and analytical programs allowed determining the size, shape change, perimeter, degree of hydratation and crystallization at 0.07% and 0.04% of polysaccharide concentration. It was shown that the size of a polysaccharide colloidal particle does not much depend on polysaccharide concentration, however, the number of identical colloidal formations is dependent on the concentration of polysaccharide

    Nonequilibrium electrons in tunnel structures under high-voltage injection

    Full text link
    We investigate electronic distributions in nonequilibrium tunnel junctions subject to a high voltage bias VV under competing electron-electron and electron-phonon relaxation processes. We derive conditions for reaching quasi-equilibrium and show that, though the distribution can still be thermal for low energies where the rate of the electron-electron relaxation exceeds significantly the electron-phonon relaxation rate, it develops a power-law tail at energies of order of eVeV. In a general case of comparable electron-electron and electron-phonon relaxation rates, this tail leads to emission of high-energy phonons which carry away most of the energy pumped in by the injected current.Comment: Revised versio

    Oscillations of General Relativistic Multi-fluid/Multi-layer Compact Stars

    Full text link
    We develop the formalism for determining the quasinormal modes of general relativistic multi-fluid compact stars in such a way that the impact of superfluid gap data can be assessed. Our results represent the first attempt to study true multi-layer dynamics, an important step towards considering realistic superfluid/superconducting compact stars. We combine a relativistic model for entrainment with model equations of state that explicity incorporate the symmetry energy. Our analysis emphasises the many different parameters that are required for this kind of modelling, and the fact that standard tabulated equations of state are grossly incomplete in this respect. To make progress, future equations of state need to provide the energy density as a function of the various nucleon number densities, the temperature (i.e. entropy), and the entrainment among the various components

    Flux tubes and the type-I/type-II transition in a superconductor coupled to a superfluid

    Full text link
    We analyze magnetic flux tubes at zero temperature in a superconductor that is coupled to a superfluid via both density and gradient (``entrainment'') interactions. The example we have in mind is high-density nuclear matter, which is a proton superconductor and a neutron superfluid, but our treatment is general and simple, modeling the interactions as a Ginzburg-Landau effective theory with four-fermion couplings, including only s-wave pairing. We numerically solve the field equations for flux tubes with an arbitrary number of flux quanta, and compare their energies. This allows us to map the type-I/type-II transition in the superconductor, which occurs at the conventional kappa = 1/sqrt(2) if the condensates are uncoupled. We find that a density coupling between the condensates raises the critical kappa and, for a sufficiently high neutron density, resolves the type-I/type-II transition line into an infinite number of bands corresponding to ``type-II(n)'' phases, in which n, the number of quanta in the favored flux tube, steps from 1 to infinity. For lower neutron density, the coupling creates spinodal regions around the type-I/type-II boundary, in which metastable flux configurations are possible. We find that a gradient coupling between the condensates lowers the critical kappa and creates spinodal regions. These exotic phenomena may not occur in nuclear matter, which is thought to be deep in the type-II region, but might be observed in condensed matter systems.Comment: 14 pages, improved discussion of the effects of varying the neutron/proton condensate ratio; added reference

    Giant vortices, vortex rings and reentrant behavior in type-1.5 superconductors

    Full text link
    We predict that in a bulk type-1.5 superconductor the competing magnetic responses of the two components of the order parameter can result in a vortex interaction that generates group-stabilized giant vortices and unusual vortex rings in the absence of any extrinsic pinning or confinement mechanism. We also find within the Ginzburg-Landau theory a rich phase diagram with successions of behaviors like type-1 -> type-1.5 -> type-2 -> type-1.5 as temperature decreases.Comment: 5 pages, 4 figure
    corecore