96 research outputs found
Recommended from our members
Thermodynamic assessment of the Ge-Si-O-Cl-H system
An assessed thermodynamic dataset for the Ge-Si-O-Cl- H system useful for application in the glass fiber industry is presented. The focus of the work is on the germanium-bearing species. Taking into account the available vapor pressure measurements on the Ge-O , Ge-Cl, Ge-Cl-H , and Ge-O-Cl Systems, modifications have been made to the recommended data for the important oxide and halide species. The GeO2-SiO2 and GeCl4-SiCl4 binary systems have been thermodynamically optimized using simple models. The current dataset, when combined with the data from the FactSage™ database for the other required species/phases, can be used to make useful calculations of glass vapor equilibria pertinent to the manufacture of germanium-doped silica glass fibers using vapor deposition methods
Effects of dispersed multiwalled carbon nanotubes on the micro-explosion and combustion characteristics of 2-methylfuran – diesel mixture droplets
Isolated droplet combustion experiments have been carried out on neat diesel, a 15 vol% 2-methylfuran – 85 vol% diesel mixture (MF15), and nanofuels made from MF15 base fuel with addition of multiwalled carbon nanotubes (MWCNTs) at 25 ppm, 50 ppm, and 100 ppm concentrations (referred to as MF15C25, MF15C50, and MF15C100). Compared to MF15, the nanofuels displayed increased micro-explosion intensity and reduced micro-explosion occurrences, both effects being more pronounced at higher MWCNTs loadings. This behavior is attributed to the higher surface tension and viscosity of the nanofuels compared to that of MF15. The ignition delay decreased from 2.33 s to 1.71 s, the combustion rate constant increased from 0.82 mm2 s−1 to 1.01 mm2 s−1, and the combustion period reduced from 5.31 s to 4.54 s when going from pure MF15 to MF15C50. The improved combustion characteristics can be related to the superior thermal conductivity and large specific surface area of the dispersed MWCNTs in the nanofuels. The combustion characteristics of the nanofuel deteriorate at the highest MWCNTs dosing investigated here, possibly due to nanoparticle agglomeration. Overall, the present results suggest that dosing of MWCNTs at optimum levels improves the thermal efficiency and reduces the NOx emissions upon combustion of MF-diesel blends
AN IMPROVED TRACKING USING IMU AND VISION FUSION FOR MOBILE AUGMENTED REALITY APPLICATIONS
ABSTRACT Mobile Augmented Reality (MAR) is becoming an important cyber-physica
Open science discovery of potent noncovalent SARS-CoV-2 main protease inhibitors
We report the results of the COVID Moonshot, a fully open-science, crowdsourced, and structure-enabled drug discovery campaign targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease. We discovered a noncovalent, nonpeptidic inhibitor scaffold with lead-like properties that is differentiated from current main protease inhibitors. Our approach leveraged crowdsourcing, machine learning, exascale molecular simulations, and high-throughput structural biology and chemistry. We generated a detailed map of the structural plasticity of the SARS-CoV-2 main protease, extensive structure-activity relationships for multiple chemotypes, and a wealth of biochemical activity data. All compound designs (>18,000 designs), crystallographic data (>490 ligand-bound x-ray structures), assay data (>10,000 measurements), and synthesized molecules (>2400 compounds) for this campaign were shared rapidly and openly, creating a rich, open, and intellectual property–free knowledge base for future anticoronavirus drug discovery
SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids
Kidney failure is frequently observed during and after COVID-19, but it remains elusive whether this is a direct effect of the virus. Here, we report that SARS-CoV-2 directly infects kidney cells and is associated with increased tubule-interstitial kidney fibrosis in patient autopsy samples. To study direct effects of the virus on the kidney independent of systemic effects of COVID-19, we infected human-induced pluripotent stem-cell-derived kidney organoids with SARS-CoV-2. Single-cell RNA sequencing indicated injury and dedifferentiation of infected cells with activation of profibrotic signaling pathways. Importantly, SARS-CoV-2 infection also led to increased collagen 1 protein expression in organoids. A SARS-CoV-2 protease inhibitor was able to ameliorate the infection of kidney cells by SARS-CoV-2. Our results suggest that SARS-CoV-2 can directly infect kidney cells and induce cell injury with subsequent fibrosis. These data could explain both acute kidney injury in COVID-19 patients and the development of chronic kidney disease in long COVID
Enabling equitable and affordable access to novel therapeutics for pandemic preparedness and response via creative intellectual property agreements
The COVID-19 pandemic demonstrated that the current purely market-driven approaches to drug discovery and development alone are insufficient to drive equitable access to new therapies either in preparation for, or in response to, pandemics. A new global framework driven by equity is under negotiation at the World Health Organization to support pandemic preparedness and response. Some believe that the global intellectual property (IP) system itself is part of the problem and propose a purely Open Science approach. In this article, we discuss how existing IP frameworks and contractual agreements may be used to create rights and obligations to generate a more effective global response in future, drawing on experience gained in the COVID Moonshot program, a purely Open Science collaboration, and the ASAP AViDD drug discovery consortium, which uses a hybrid, phased model of Open Science, patent filing and contractual agreements. We conclude that ‘straight to generic’ drug discovery is appropriate in some domains, and that targeted patent protection, coupled with open licensing, can offer a route to generating affordable and equitable access for therapy areas where market forces have failed. The Extended Data contains a copy of our model IP policy, which can be used as a template by other discovery efforts seeking to ensure their drug candidates can be developed for globally equitable and affordable access
The structural origin of the unusual compression behaviors in nanostructured TiO<sub>2</sub>: insights from first-principles calculations
First-principles calculations of anatase structured TiO2and ZrO2as well as of TiO2–B were carried up to 20 GPa in order to develop an understanding of the unusual compression and pressure-dependent phase transitions reported for nanocrystalline (nc) pure and Zr-doped anatase and nc TiO2–B.</p
- …
