4,494 research outputs found
The ATLAS barrel level-1 Muon Trigger Sector-Logic/RX off-detector trigger and acquisition board
The ATLAS experiment uses a system of three concentric layers of Resistive Plate Chambers (RPC) detector for the Level-1 Muon Trigger in the air-core barrel toroid region. The trigger algorithm looks for hit coincidences within different detector layers inside the programmable geometrical road which defines the transverse momentum cut. The on-detector electronics that provides the trigger and detector readout functionalities collects input signals coming from the RPC front-end. Trigger and readout data are then sent via optical fibres to the off-detector electronics. Six or seven optical fibres from one of the 64 trigger sectors go to one Sector-Logic/RX module, that later elaborates the collected trigger and readout data, and sends data respectively to the Read-Out Driver modules and to the Central Level-1 Trigger. We present the functionality and the implementation of the VME Sector-Logic/RX module, and the configuration of the system for the first cosmic ray data collected using this module
Ageing test of the ATLAS RPCs at X5-GIF
An ageing test of three ATLAS production RPC stations is in course at X5-GIF,
the CERN irradiation facility. The chamber efficiencies are monitored using
cosmic rays triggered by a scintillator hodoscope. Higher statistics
measurements are made when the X5 muon beam is available. We report here the
measurements of the efficiency versus operating voltage at different source
intensities, up to a maximum counting rate of about 700Hz/cm^2. We describe the
performance of the chambers during the test up to an overall ageing of 4 ATLAS
equivalent years corresponding to an integrated charge of 0.12C/cm^2, including
a safety factor of 5.Comment: 4 pages. Presented at the VII Workshop on Resistive Plate Chambers
and Related Detectors; Clermont-Ferrand October 20th-22nd, 200
Prospective study on nanoparticle albumin-bound paclitaxel in advanced breast cancer. Clinical results and biological observations in taxane-pretreated patients
Background: There is a deep need to improve the care of metastatic breast cancer (MBC) patients, since even today it remains an incurable disease. Taxanes are considered the most effective cytotoxic drugs for the treatment of MBC, both in monotherapy and in combined schedules, but the need for synthetic solvents contributes to the severe toxicities and may have a negative impact on the efficacy. Nanoparticle albumin-bound paclitaxel (Nab-paclitaxel) is a colloidal suspension of paclitaxel and human serum albumin initially developed to avoid the toxicities associated with conventional taxanes. Patients and methods: The aim of this prospective, single-center open-label, noncomparative study was to evaluate the efficacy and safety of nab-paclitaxel in MBC patients pretreated with taxanes. The patients were treated with nab-paclitaxel as a single agent, 260 mg/m2 on day 1 of each 3-week cycle or 125 mg/m2 weekly. The primary endpoint was the overall response rate (ORR). Secondary objectives were duration of response, clinical benefit rate, progression-free survival (PFS), overall survival, and safety. Results: A total of 42 patients (median age 48 years, median Eastern Cooperative Oncology Group performance status 0, triple-negative MBC 19%, all pretreated with a taxane-based therapy, mainly in advanced disease) were enrolled in the study. The ORR was 23.8%, including one complete response (2.4%) and nine partial responses (21.4%); the disease control rate was 50%. The median duration of response was 7.2 months. After a median follow-up of 9 months, the median PFS was 4.6 months. ORR and PFS were similar irrespective of the previous chemotherapy lines, metastatic sites, and biomolecular expression. Nab-paclitaxel was well tolerated, and the most frequent treatment-related toxicities were mild to moderate (grades 1–2). Conclusion: This real-life study shows that nab-paclitaxel has a significant antitumor activity and a manageable safety profile in patients pretreated with taxanes and experiencing a treatment failure after at least one line of chemotherapy
Radiation test and application of FPGAs in the ATLAS Level 1 Trigger
The front-end system of the Silicon Drift Detectors (SDDs) of the ALICE experiment is made of two ASICs. The first chip performs the preamplification, temporary analogue storage and analogue-to-digital conversion of the detector signals. The second chip is a digital buffer that allows for a significant reduction of the connection from the front-end module to the outside world. In this paper, the results achieved on the first complete prototype of the front-end system for the SDDs of ALICE are presented
The ATLAS Barrel Level-1 Muon Trigger Calibration
The ATLAS experiment uses a system of three concentric Resistive Plate Chambers detectors layers for the level-1 muon trigger in the air-core barrel toroid region. The trigger classifies muons within different programmable transverse momentum ranges, and tags the identified tracks with the corresponding bunch crossing number. The algorithm looks for hit coincidences within different detector layers inside the programmed geometrical road which defines the transverse momentum cut. The on-detector electronics providing the trigger and detector readout functionalities collects input signals coming from the RPC front-end. Because of the different time-of-flights and cables and optical fibres lengths, signals have to be adjusted in time in order to be correctly aligned before being processed. Programmable delay logics are provided in the trigger and readout system to allow for time adjustment, for hit signals as well as for LHC Timing, Trigger and Control signals. The trigger calibration provides the set of numbers used during electronics initialization for correctly aligning signals inside the trigger and readout system. The functionality scheme and the algorithm of the calibration are presented
Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV
A measurement of the production cross-section for top quark pairs(\ttbar)
in collisions at \sqrt{s}=7 \TeV is presented using data recorded with
the ATLAS detector at the Large Hadron Collider. Events are selected in two
different topologies: single lepton (electron or muon ) with large
missing transverse energy and at least four jets, and dilepton (,
or ) with large missing transverse energy and at least two jets. In a
data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton
topology and 9 events in the dilepton topology. The corresponding expected
backgrounds from non-\ttbar Standard Model processes are estimated using
data-driven methods and determined to be events and events, respectively. The kinematic properties of the selected events are
consistent with SM \ttbar production. The inclusive top quark pair production
cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where
the first uncertainty is statistical and the second systematic. The measurement
agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables,
CERN-PH number and final journal adde
Inclusive search for same-sign dilepton signatures in pp collisions at root s=7 TeV with the ATLAS detector
An inclusive search is presented for new physics in events with two isolated leptons (e or mu) having the same electric charge. The data are selected from events collected from p p collisions at root s = 7 TeV by the ATLAS detector and correspond to an integrated luminosity of 34 pb(-1). The spectra in dilepton invariant mass, missing transverse momentum and jet multiplicity are presented and compared to Standard Model predictions. In this event sample, no evidence is found for contributions beyond those of the Standard Model. Limits are set on the cross-section in a fiducial region for new sources of same-sign high-mass dilepton events in the ee, e mu and mu mu channels. Four models predicting same-sign dilepton signals are constrained: two descriptions of Majorana neutrinos, a cascade topology similar to supersymmetry or universal extra dimensions, and fourth generation d-type quarks. Assuming a new physics scale of 1 TeV, Majorana neutrinos produced by an effective operator V with masses below 460 GeV are excluded at 95% confidence level. A lower limit of 290 GeV is set at 95% confidence level on the mass of fourth generation d-type quarks
- …
