612 research outputs found
Evolution and development of Brain Networks: From Caenorhabditis elegans to Homo sapiens
Neural networks show a progressive increase in complexity during the time
course of evolution. From diffuse nerve nets in Cnidaria to modular,
hierarchical systems in macaque and humans, there is a gradual shift from
simple processes involving a limited amount of tasks and modalities to complex
functional and behavioral processing integrating different kinds of information
from highly specialized tissue. However, studies in a range of species suggest
that fundamental similarities, in spatial and topological features as well as
in developmental mechanisms for network formation, are retained across
evolution. 'Small-world' topology and highly connected regions (hubs) are
prevalent across the evolutionary scale, ensuring efficient processing and
resilience to internal (e.g. lesions) and external (e.g. environment) changes.
Furthermore, in most species, even the establishment of hubs, long-range
connections linking distant components, and a modular organization, relies on
similar mechanisms. In conclusion, evolutionary divergence leads to greater
complexity while following essential developmental constraints
PENGARUH DOSIS KUNING TELUR TERHADAP DAYA TAHAN HIDUP SPERMATOZOA AYAM KAMPUNG (GALLUS DOMESTICUS) DALAM PENGENCER NACL FISIOLOGIS
Banda Ace
Formative Assessment and Benchmark Testing: Phase 2
As school districts respond to test-based accountability requirements the emphasis on using data to drive decision making has most recently focused on using interim or benchmark assessment results. The use of these assessments to monitor student progress and inform instruction with the aim to improve learning is widespread. When considered in a continuum of assessments based on the proximity to instruction, benchmark assessments are located between teachers’ minute-by-minute and daily formative assessment practices that are used to direct instruction to support learning, and the summative unit assessments, or tests administered after instruction has occurred to measure learning. As such, the intended purpose of benchmark assessments blends the ideas of data-driven decision making with the principles of formative assessment. The expectation is that school administrators and teachers will use these test results to identify students’ misunderstandings and correct the course of learning in preparation for the year-end state mandated exams. Examining the extent to which benchmark assessments results are being used in this formative way was the primary aim of this study. This report presents results of a survey of elementary and middle school teachers in four school divisions about their use of benchmark assessment data to improve instruction and support student learning. This report documents the second phase of a two-stage investigation of teachers’ formative uses of benchmark assessment results.
Establishing, versus Maintaining, Brain Function: A Neuro-computational Model of Cortical Reorganization after Injury to the Immature Brain
The effect of age at injury on outcome after acquired brain injury (ABI) has
been the subject of much debate. Many argue that young brains are relatively
tolerant of injury. A contrasting viewpoint due to Hebb argues that greater
system integrity may be required for the initial establishment of a function
than for preservation of an already-established function. A neuro-computational
model of cortical map formation was adapted to examine effects of focal and
distributed injury at various stages of development. This neural network model
requires a period of training during which it self-organizes to establish
cortical maps. Injuries were simulated by lesioning the model at various stages
of this process and network function was monitored as "development" progressed
to completion. Lesion effects are greater for larger, earlier, and distributed
(multifocal) lesions. The mature system is relatively robust, particularly to
focal injury. Activities in recovering systems injured at an early stage show
changes that emerge after an asymptomatic interval. Early injuries cause
qualitative changes in system behavior that emerge after a delay during which
the effects of the injury are latent. Functions that are incompletely
established at the time of injury may be vulnerable particularly to multifocal
injury
Recommended from our members
Built-in-self-test and foreground calibration of SAR ADCs
This thesis explores the scope of ‘Built-in-Self-Test’(BIST) schemes to reduce the time cost complexity associated with the production tests for static linearity errors in Successive Approximation (SAR) ADCs. In this regard, an on-chip implementation of the ‘Stimulus Based Error Identification and Removal’ (SEIR) method [1] is sought to be pursued. As an extension, it is proposed that the estimated ADC non-linearities may then be suitably calibrated to achieve higher resolution. A brief review of the testing and calibration algorithm is undertaken. Further, this work elaborates on the design of a prototype front-end test generator and a buffer interface to calibrate a 10MHz 14 bit redundant SAR ADC in the TSMC 180nm process. Simulation results validating the circuit implementation of the integrated front-end system have been presented.Electrical and Computer Engineerin
A modular focal plane detector system for the heavy ion reaction analyzer at NSC, New Delhi
A detector system has been developed for the focal plane of the HIRA. It consists of two independent detectors, a low-pressure multiwire proportional counter (LP-MWPC) followed by a split-anode ionization detector. Details of the design and test results are presented. Using slow preamplifiers, the position resolution is ≥1 mm and the time resolution is estimated to be 1.5 ns for the LP-MWPC. The ionization detector gives 2.4% energy resolution for 150 MeV 28Si scattered off a gold target and the ΔZ/Z obtained for 28Si+27Al is 1/42 for Z=14. Some results for fusion and transfer studies for the 48Ti+58Ni and 28Si+68Zn systems, respectively, at energies around the Coulomb barrier, are presented to highlight the performance of the detector system
Transfer measurements for the Ti plus Ni systems at near barrier energies
Large enhancements have been observed in the sub-barrier fusion cross sections for Ti + Ni systems in our previous studies. Coupled channel calculations incorporating couplings to 2(+) and 3(-) states failed to explain these enhancements completely. A possibilty of transfer channels contributing to the residual enhancements had been suggested. In order to investigate the role of relevant transfer channels, measurements of one- and two-nucleon transfer were carried out for Ti-46,Ti-48 + Ni-64 systems. The present paper gives the results of these studies
- …
