31 research outputs found
Control of the chemiluminescence spectrum with porous Bragg mirrors
Tunable, battery free light emission is demonstrated in a solid state device
that is compatible with lab on a chip technology and easily fabricated via
solution processing techniques. A porous one dimensional (1D) photonic crystal
(also called Bragg stack or mirror) is infiltrated by chemiluminescence
rubrene-based reagents. The Bragg mirror has been designed to have the photonic
band gap overlapping with the emission spectrum of rubrene. The
chemiluminescence reaction occurs in the intrapores of the photonic crystal and
the emission spectrum of the dye is modulated according to the photonic band
gap position. This is a compact, powerless emitting source that can be
exploited in disposable photonic chip for sensing and point of care
applications.Comment: 8 pages, 3 figure
Biexciton initialization by two-photon excitation in site-controlled quantum dots: the complexity of the antibinding state case
In this work, we present a biexciton state population in (111)B oriented site-controlled InGaAs quantum dots (QDs) by resonant two photon excitation. We show that the excited state recombines emitting highly pure single photon pairs entangled in polarization. The discussed cases herein are compelling due to the specific energetic structure of pyramidal InGaAs QDs—an antibinding biexciton—a state with a positive binding energy. We demonstrate that resonant two-photon excitation of QDs with antibinding biexcitons can lead to a complex excitation-recombination scenario. We systematically observed that the resonant biexciton state population is competing with an acoustic-phonon assisted population of an exciton state. These findings show that under typical two-photon resonant excitation conditions, deterministic biexciton state initialization can be compromised. This complication should be taken into account by the community members aiming to utilize similar epitaxial QDs with an antibinding biexciton
Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: A comparative risk assessment
Background: High blood pressure, blood glucose, serum cholesterol, and BMI are risk factors for cardiovascular diseases and some of these factors also increase the risk of chronic kidney disease and diabetes. We estimated mortality from cardiovascular diseases, chronic kidney disease, and diabetes that was attributable to these four cardiometabolic risk factors for all countries and regions from 1980 to 2010. Methods: We used data for exposure to risk factors by country, age group, and sex from pooled analyses of population-based health surveys. We obtained relative risks for the effects of risk factors on cause-specific mortality from meta-analyses of large prospective studies. We calculated the population attributable fractions for each risk factor alone, and for the combination of all risk factors, accounting for multicausality and for mediation of the effects of BMI by the other three risks. We calculated attributable deaths by multiplying the cause-specific population attributable fractions by the number of disease-specific deaths. We obtained cause-specific mortality from the Global Burden of Diseases, Injuries, and Risk Factors 2010 Study. We propagated the uncertainties of all the inputs to the final estimates. Findings: In 2010, high blood pressure was the leading risk factor for deaths due to cardiovascular diseases, chronic kidney disease, and diabetes in every region, causing more than 40% of worldwide deaths from these diseases; high BMI and glucose were each responsible for about 15% of deaths, and high cholesterol for more than 10%. After accounting for multicausality, 63% (10·8 million deaths, 95% CI 10·1-11·5) of deaths from these diseases in 2010 were attributable to the combined effect of these four metabolic risk factors, compared with 67% (7·1 million deaths, 6·6-7·6) in 1980. The mortality burden of high BMI and glucose nearly doubled from 1980 to 2010. At the country level, age-standardised death rates from these diseases attributable to the combined effects of these four risk factors surpassed 925 deaths per 100 000 for men in Belarus, Kazakhstan, and Mongolia, but were less than 130 deaths per 100 000 for women and less than 200 for men in some high-income countries including Australia, Canada, France, Japan, the Netherlands, Singapore, South Korea, and Spain. Interpretation: The salient features of the cardiometabolic disease and risk factor epidemic at the beginning of the 21st century are high blood pressure and an increasing effect of obesity and diabetes. The mortality burden of cardiometabolic risk factors has shifted from high-income to low-income and middle-income countries. Lowering cardiometabolic risks through dietary, behavioural, and pharmacological interventions should be a part of the global response to non-communicable diseases. Funding: UK Medical Research Council, US National Institutes of Health. © 2014 Elsevier Ltd
Global tracking of marine megafauna space use reveals how to achieve conservation targets
The recent Kunming-Montreal Global Biodiversity Framework (GBF) sets ambitious goals but no clear pathway for how zero loss of important biodiversity areas and halting human-induced extinction of threatened species will be achieved. We assembled a multi-taxa tracking dataset (11 million geopositions from 15,845 tracked individuals across 121 species) to provide a global assessment of space use of highly mobile marine megafauna, showing that 63% of the area that they cover is used 80% of the time as important migratory corridors or residence areas. The GBF 30% threshold (Target 3) will be insufficient for marine megafauna’s effective conservation, leaving important areas exposed to major anthropogenic threats. Coupling area protection with mitigation strategies (e.g., fishing regulation, wildlife-traffic separation) will be essential to reach international goals and conserve biodiversity
Protein/Lipid Interaction in the Bacterial Photosynthetic Reaction Center: Phosphatidylcholine and Phosphatidylglycerol Modify the Free Energy Levels of the Quinones
The role of characteristic phospholipids of native membranes, phosphatidylcholine (PC), phosphatidylglycerol (PG), and cardiolipin (CL), was studied in the energetics of the acceptor quinone side in photosynthetic reaction centers of Rhodobacter sphaeroides. The rates of the first, k AB(1), and the second, kAB(2), electron transfer and that of the charge recombination, kBP, the free energy levels of Q A-QB and QAQB- states, and the changes of charge compensating protein relaxation were determined in RCs incorporated into artificial lipid bilayer membranes. In RCs embedded in the PC vesicle, kAB(1) and kAB(2) increased (from 3100 to 4100 s-1 and from 740 to 3300 s-1, respectively) and kBP decreased (from 0.77 to 0.39 s-1) compared to those measured in detergent at pH 7. In PG, kAB(1) and kBP decreased (to values of 710 and 0.26 s-1, respectively), while kAB(2) increased to 1506 s-1 at pH 7. The free energy between the QA-QB and Q AQB- states decreased in PC and PG (ΔG°QA-QB→QAQ B- = -76.9 and -88.5 meV, respectively) compared to that measured in detergent (-61.8 meV). The changes of the QA/Q A- redox potential measured by delayed luminescence showed (1) a differential effect of lipids whether RC incorporated in micelles or vesicles, (2) an altered binding interaction between anionic lipids and RC, (3) a direct influence of PC and PG on the free energy levels of the primary and secondary quinones probably through the intraprotein hydrogen-bonding network, and (4) a larger increase of the QA/QA- free energy in PG than in PC both in detergent micelles and in single-component vesicles. On the basis of recent structural data, implications of the binding properties of phospholipids to RC and possible interactions between lipids and electron transfer components will be discussed
ENTHALPY/ENTROPY DRIVEN ACTIVATION OF THE FIRST INTERQUINONE ELECTRON TRANSFER IN BACTERIAL PHOTOSYNTHETIC REACTION CENTERS EMBEDDED IN VESICLES OF PHYSIOLOGICALLY IMPORTANT PHOSPHOLIPIDS
The thermodynamics and kinetics of light-induced electron transfer in bacterial photosynthetic RCs are sensitive to physiologically important lipids (phosphatidylcholine, cardiolipin and phosphatidylglycerol) in the environment. The analysis of the temperature-dependence of the rate of the P+QA-QB→ P+QAQB- interquinone electron transfer revealed high enthalpy change of activation in zwitterionic or neutral micelles and vesicles and low enthalpy change of activation in vesicles constituted of negatively charged phospholipids. The entropy change of activation was compensated by the changes of enthalpy, thus the free energy change of activation (≈ 500 meV) did not show large variation in vesicles of different lipids
