11,775 research outputs found

    Muon Performance in the Presence of High Pile-up in ATLAS

    Full text link
    In 2012, the LHC is operated at sqrt(s) = 8 TeV in a mode leading up to 40 inelastic pp collisions per bunch crossing. The identification and reconstruction of muons produced in hard collisions is difficult in this challenging environment. Di-muon decays of Z bosons have been used to study the muon momentum resolution as well as the muon identification and reconstruction efficiencies of the ATLAS detector as a function of the muon transverse momentum from 15 GeV to 100 GeV and the number of inelastic collisions per event. These studies show that the muon momentum resolution, muon identification and reconstruction efficiencies are independent of the amount of pile-up present in an event.Comment: 4 pages, 5 figures, PIC201

    Focusing for Pronoun Resolution in English Discourse: An Implementation

    Full text link
    Anaphora resolution is one of the most active research areas in natural language processing. This study examines focusing as a tool for the resolution of pronouns which are a kind of anaphora. Focusing is a discourse phenomenon like anaphora. Candy Sidner formalized focusing in her 1979 MIT PhD thesis and devised several algorithms to resolve definite anaphora including pronouns. She presented her theory in a computational framework but did not generally implement the algorithms. Her algorithms related to focusing and pronoun resolution are implemented in this thesis. This implementation provides a better comprehension of the theory both from a conceptual and a computational point of view. The resulting program is tested on different discourse segments, and evaluation and analysis of the experiments are presented together with the statistical results.Comment: iii + 49 pages, compressed, uuencoded Postscript file; revised version of the first author's Bilkent M.S. thesis, written under the supervision of the second author; notify Akman via e-mail ([email protected]) or fax (+90-312-266-4126) if you are unable to obtain hardcopy, he'll work out somethin

    Connecting Dream Networks Across Cultures

    Full text link
    Many species dream, yet there remain many open research questions in the study of dreams. The symbolism of dreams and their interpretation is present in cultures throughout history. Analysis of online data sources for dream interpretation using network science leads to understanding symbolism in dreams and their associated meaning. In this study, we introduce dream interpretation networks for English, Chinese and Arabic that represent different cultures from various parts of the world. We analyze communities in these networks, finding that symbols within a community are semantically related. The central nodes in communities give insight about cultures and symbols in dreams. The community structure of different networks highlights cultural similarities and differences. Interconnections between different networks are also identified by translating symbols from different languages into English. Structural correlations across networks point out relationships between cultures. Similarities between network communities are also investigated by analysis of sentiment in symbol interpretations. We find that interpretations within a community tend to have similar sentiment. Furthermore, we cluster communities based on their sentiment, yielding three main categories of positive, negative, and neutral dream symbols.Comment: 6 pages, 3 figure

    Traveling Trends: Social Butterflies or Frequent Fliers?

    Full text link
    Trending topics are the online conversations that grab collective attention on social media. They are continually changing and often reflect exogenous events that happen in the real world. Trends are localized in space and time as they are driven by activity in specific geographic areas that act as sources of traffic and information flow. Taken independently, trends and geography have been discussed in recent literature on online social media; although, so far, little has been done to characterize the relation between trends and geography. Here we investigate more than eleven thousand topics that trended on Twitter in 63 main US locations during a period of 50 days in 2013. This data allows us to study the origins and pathways of trends, how they compete for popularity at the local level to emerge as winners at the country level, and what dynamics underlie their production and consumption in different geographic areas. We identify two main classes of trending topics: those that surface locally, coinciding with three different geographic clusters (East coast, Midwest and Southwest); and those that emerge globally from several metropolitan areas, coinciding with the major air traffic hubs of the country. These hubs act as trendsetters, generating topics that eventually trend at the country level, and driving the conversation across the country. This poses an intriguing conjecture, drawing a parallel between the spread of information and diseases: Do trends travel faster by airplane than over the Internet?Comment: Proceedings of the first ACM conference on Online social networks, pp. 213-222, 201

    Abidin Dino açıklıyor:Tonguç'un vasiyeti

    Get PDF
    Taha Toros Arşivi, Dosya No: 178-Abidin Din

    Online Human-Bot Interactions: Detection, Estimation, and Characterization

    Full text link
    Increasing evidence suggests that a growing amount of social media content is generated by autonomous entities known as social bots. In this work we present a framework to detect such entities on Twitter. We leverage more than a thousand features extracted from public data and meta-data about users: friends, tweet content and sentiment, network patterns, and activity time series. We benchmark the classification framework by using a publicly available dataset of Twitter bots. This training data is enriched by a manually annotated collection of active Twitter users that include both humans and bots of varying sophistication. Our models yield high accuracy and agreement with each other and can detect bots of different nature. Our estimates suggest that between 9% and 15% of active Twitter accounts are bots. Characterizing ties among accounts, we observe that simple bots tend to interact with bots that exhibit more human-like behaviors. Analysis of content flows reveals retweet and mention strategies adopted by bots to interact with different target groups. Using clustering analysis, we characterize several subclasses of accounts, including spammers, self promoters, and accounts that post content from connected applications.Comment: Accepted paper for ICWSM'17, 10 pages, 8 figures, 1 tabl

    Sait Faik Fransızcada

    Get PDF
    Taha Toros Arşivi, Dosya No: 5-Sait Faik Abasıyanıkİstanbul Kalkınma Ajansı (TR10/14/YEN/0033) İstanbul Development Agency (TR10/14/YEN/0033
    corecore