868 research outputs found
APSIS - an Artificial Planetary System in Space to probe extra-dimensional gravity and MOND
A proposal is made to test Newton's inverse-square law using the perihelion
shift of test masses (planets) in free fall within a spacecraft located at the
Earth-Sun L2 point. Such an Artificial Planetary System In Space (APSIS) will
operate in a drag-free environment with controlled experimental conditions and
minimal interference from terrestrial sources of contamination. We demonstrate
that such a space experiment can probe the presence of a "hidden" fifth
dimension on the scale of a micron, if the perihelion shift of a "planet" can
be measured to sub-arc-second accuracy. Some suggestions for spacecraft design
are made.Comment: 17 pages, revtex, references added. To appear in Special issue of
IJMP
A New Cosmological Model of Quintessence and Dark Matter
We propose a new class of quintessence models in which late times
oscillations of a scalar field give rise to an effective equation of state
which can be negative and hence drive the observed acceleration of the
universe. Our ansatz provides a unified picture of quintessence and a new form
of dark matter we call "Frustrated Cold Dark Matter" (FCDM). FCDM inhibits
gravitational clustering on small scales and could provide a natural resolution
to the core density problem for disc galaxy halos. Since the quintessence field
rolls towards a small value, constraints on slow-roll quintessence models are
safely circumvented in our model.Comment: Revised. Important new results added in response to referees comment
Study on interventions to reduce vibration transmission to power tiller operator
Present study focuses on interventions to reduce vibration transmitted to power tiller operator. In this study two operations (namely: standing mode and transportation) and three forward speeds (1.0, 1.5 and 2.0 kmh-1) were selected. In both selected operations vibration magnitudes were maximum at 2.0 kmh-1. In the standing mode vibration magnitudes in x, y and z direction were 5.83, 1.37 and 2.36 ms -2 at 2.0 kmh-1. In transportation vibration magnitudes were 6.81, 1.49, 2.82 ms-2 respectively in x, y and z direction at 2.0 kmh-1. The selection of vibration isolators were done on the basis of the transmissibility curves and the isolation region. The selected isolators were installed at interface between engine and the chassis. These interventions along with previously developed bush and sheet type interventions reduced vibrations up to 50.24, 69.06 and 59.08 % at 1.0, 1.5 and 2.0 kmh-1 in stationary mode. In transportation vibration reduction were 52.96, 65.98 and 36.67 % at 1.0, 1.5 and 2.0 kmh-1, respectively. The vibration reduction were high in stationary mode than transportation mode because in stationary mode vibration comes only from the engine but in transportation vibration comes from engine and the surface profile as well
The 'Parekh Report' - national identities with nations and nationalism
‘Multiculturalists’ often advocate national identities. Yet few study the ways in which ‘multiculturalists’ do so and in this article I will help to fill this gap. I will show that the Commission for Multi-Ethnic Britain’s report reflects a previously unnoticed way of thinking about the nature and worth of national identities that the Commission’s chair, and prominent political theorist, Bhikhu Parekh, had been developing since the 1970s. This way of thinking will be shown to avoid the questionable ways in which conservative and liberal nationalists discuss the nature and worth of national identities while offering an alternative way to do so. I will thus show that a report that was once criticised for the way it discussed national identities reflects how ‘multiculturalists’ think about national identities in a distinct and valuable way that has gone unrecognised
Quantum enigma machine: Experimentally demonstrating quantum data locking
Shannon proved in 1949 that information-theoretic-secure encryption is possible if the encryption key is used only once, is random, and is at least as long as the message itself. Notwithstanding, when information is encoded in a quantum system, the phenomenon of quantum data locking allows one to encrypt a message with a shorter key and still provide information-theoretic security. We present one of the first feasible experimental demonstrations of quantum data locking for direct communication and propose a scheme for a quantum enigma machine that encrypts 6 bits per photon (containing messages, new encryption keys, and forward error correction bits) with less than 6 bits per photon of encryption key while remaining information-theoretically secure
Anisotropy dissipation in brane-world inflation
We examine the behavior of an anisotropic brane-world in the presence of
inflationary scalar fields. We show that, contrary to naive expectations, a
large anisotropy does not adversely affect inflation. On the contrary, a large
initial anisotropy introduces more damping into the scalar field equation of
motion, resulting in greater inflation. The rapid decay of anisotropy in the
brane-world significantly increases the class of initial conditions from which
the observed universe could have originated. This generalizes a similar result
in general relativity. A unique feature of Bianchi I brane-world cosmology
appears to be that for scalar fields with a large kinetic term the initial
expansion of the universe is quasi-isotropic. The universe grows more
anisotropic during an intermediate transient regime until anisotropy finally
disappears during inflationary expansion.Comment: 6 pages, 5 figures; minor typo corrected in Eq. (16); matches version
to appear in Phy Rev
Large-scale associations between the leukocyte transcriptome and BOLD responses to speech differ in autism early language outcome subtypes.
Heterogeneity in early language development in autism spectrum disorder (ASD) is clinically important and may reflect neurobiologically distinct subtypes. Here, we identified a large-scale association between multiple coordinated blood leukocyte gene coexpression modules and the multivariate functional neuroimaging (fMRI) response to speech. Gene coexpression modules associated with the multivariate fMRI response to speech were different for all pairwise comparisons between typically developing toddlers and toddlers with ASD and poor versus good early language outcome. Associated coexpression modules were enriched in genes that are broadly expressed in the brain and many other tissues. These coexpression modules were also enriched in ASD-associated, prenatal, human-specific, and language-relevant genes. This work highlights distinctive neurobiology in ASD subtypes with different early language outcomes that is present well before such outcomes are known. Associations between neuroimaging measures and gene expression levels in blood leukocytes may offer a unique in vivo window into identifying brain-relevant molecular mechanisms in ASD
Relic Gravity Waves from Braneworld Inflation
We discuss a scenario in which extra dimensional effects allow a scalar field
with a steep potential to play the dual role of the inflaton as well as dark
energy (quintessence). The post-inflationary evolution of the universe in this
scenario is generically characterised by a `kinetic regime' during which the
kinetic energy of the scalar field greatly exceeds its potential energy
resulting in a `stiff' equation of state for scalar field matter . The kinetic regime precedes the radiation dominated epoch and
introduces an important new feature into the spectrum of relic gravity waves
created quantum mechanically during inflation. The gravity wave spectrum
increases with wavenumber for wavelengths shorter than the comoving horizon
scale at the commencement of the radiative regime. This `blue tilt' is a
generic feature of models with steep potentials and imposes strong constraints
on a class of inflationary braneworld models. Prospects for detection of the
gravity wave background by terrestrial and space-borne gravity wave
observatories such as LIGO II and LISA are discussed.Comment: Revised in response to referee's suggestions. Main conclusions
strengthened. 23 pages latex, 9 figures. Accepted for publication in Phys.
Rev.
Gravitational instability on the brane: the role of boundary conditions
An outstanding issue in braneworld theory concerns the setting up of proper
boundary conditions for the brane-bulk system. Boundary conditions (BC's)
employing regulatory branes or demanding that the bulk metric be nonsingular
have yet to be implemented in full generality. In this paper, we take a
different route and specify boundary conditions directly on the brane thereby
arriving at a local and closed system of equations (on the brane). We consider
a one-parameter family of boundary conditions involving the anisotropic stress
of the projection of the bulk Weyl tensor on the brane and derive an exact
system of equations describing scalar cosmological perturbations on a generic
braneworld with induced gravity. Depending upon our choice of boundary
conditions, perturbations on the brane either grow moderately (region of
stability) or rapidly (instability). In the instability region, the evolution
of perturbations usually depends upon the scale: small scale perturbations grow
much more rapidly than those on larger scales. This instability is caused by a
peculiar gravitational interaction between dark radiation and matter on the
brane. Generalizing the boundary conditions obtained by Koyama and Maartens, we
find for the Dvali-Gabadadze-Porrati model an instability, which leads to a
dramatic scale-dependence of the evolution of density perturbations in matter
and dark radiation. A different set of BC's, however, leads to a more moderate
and scale-independent growth of perturbations. For the mimicry braneworld,
which expands like LCDM, this class of BC's can lead to an earlier epoch of
structure formation.Comment: 35 pages, 9 figures, an appendix and references added, version to be
published in Classical and Quantum Gravit
Cosmic Mimicry: Is LCDM a Braneworld in Disguise ?
For a broad range of parameter values, braneworld models display a remarkable
property which we call cosmic mimicry. Cosmic mimicry is characterized by the
fact that, at low redshifts, the Hubble parameter in the braneworld model is
virtually indistinguishable from that in the LCDM cosmology. An important point
to note is that the \Omega_m parameters in the braneworld model and in the LCDM
cosmology can nevertheless be quite different. Thus, at high redshifts (early
times), the braneworld asymptotically expands like a matter-dominated universe
with the value of \Omega_m inferred from the observations of the local matter
density. At low redshifts (late times), the braneworld model behaves almost
exactly like the LCDM model but with a renormalized value of the cosmological
density parameter \Omega_m^{LCDM}. The redshift which characterizes cosmic
mimicry is related to the parameters in the higher-dimensional braneworld
Lagrangian. Cosmic mimicry is a natural consequence of the scale-dependence of
gravity in braneworld models. The change in the value of the cosmological
density parameter is shown to be related to the spatial dependence of the
effective gravitational constant in braneworld theory. A subclass of mimicry
models lead to an older age of the universe and also predict a redshift of
reionization which is lower than z_{reion} \simeq 17 in the LCDM cosmology.
These models might therefore provide a background cosmology which is in better
agreement both with the observed quasar abundance at z \gsim 4 and with the
large optical depth to reionization measured by the Wilkinson Microwave
Anisotropy Probe.Comment: 22 pages, 4 figures. A subsection and references added; main results
remain unchanged. Accepted for publication in JCA
- …
