28 research outputs found
Recent Progress in Wide-Area Surveillance: Protecting Our Pipeline Infrastructure
The pipeline industry has millions of miles of pipes buried along the length and breadth of the country. Since none of the areas through which pipelines run are to be used for other activities, it needs to be monitored so as to know whether the right-of-way (RoW) of the pipeline is encroached upon at any point in time.
Rapid advances made in the area of sensor technology have enabled the use of high end video acquisition systems to monitor the RoW of pipelines. The images captured by aerial data acquisition systems are affected by a host of factors that include light sources, camera characteristics, geometric positions and environmental conditions.
We present a multistage framework for the analysis of aerial imagery for automatic detection and identification of machinery threats along the pipeline RoW which would be capable of taking into account the constraints that come with aerial imagery such as low resolution, lower frame rate, large variations in illumination, motion blurs, etc. The proposed framework is described from three directions.
In the first part of the framework, a method is developed to eliminate regions from imagery that are not considered to be a threat to the pipeline. This method makes use of monogenic phase features into a cascade of pre-trained classifiers to eliminate unwanted regions.
The second part of the framework is a part-based object detection model for searching specific targets which are considered as threat objects.
The third part of the framework is to assess the severity of the threats to pipelines in terms of computing the geolocation and the temperature information of the threat objects. The proposed scheme is tested on the real-world dataset that were captured along the pipeline RoW
Automatic Building Change Detection in Wide Area Surveillance
We present an automated mechanism that can detect and characterize the building changes by analyzing airborne or satellite imagery.
The proposed framework can be categorized into three stages: building detection, boundary extraction and change identification. To detect the buildings, we utilize local phase and local amplitude from monogenic signal to extract building features for addressing issues of varying illumination. Then a support vector machine with Radial basis kernel is used for classification. In the boundary extraction stage, a level-set function with self-organizing map based segmentation method is used to find the building boundary and compute physical area of the building segments. In the last stage, the change of the detected building is identified by computing the area differences of the same building that captured at different times.
The experiments are conducted on a set of real-life aerial imagery to show the effectiveness of the proposed method
A survey on artificial intelligence techniques for various wastewater treatment processes
Pollutant removal percentage is a key parameter for every WWTPs, and it is crucial to predict pollutant removal efficiency. The efficiency of pollutant removal processes can be increased with the help of modeling and its optimization. Statistical models are not practical enough for wastewater treatments due to complicated relationship among input and output parameters. AI models are generally more flexible while modeling complex datasets with missing data and nonlinearities. Many AI techniques are available, and the aim is to sort out the best AI technique to design predictive models for WWTPs. Deep Learning and Ensemble are the main techniques reviewed in this work. The Ensemble Learning models showing the most successful performance among other techniques by generally showed their accuracy and efficiency
A review on predictive models designed from artificial intelligence techniques in the wastewater treatment process
Modeling and optimization of pollutant removal processes are the best solutions to increase the efficiency of wastewater treatment. The relationship between input and output parameters in wastewater treatment processes (WWTP) are complicated. Artificial intelligence (AI) models are generally more flexible when compared with statistical models while modeling complex datasets with nonlinearity and missing data. Studies on AI-based WWTP are increasing day by day. Therefore, it is crucial to review the AI techniques available which are implemented for WWTP. Such a review helps classifying the techniques that are invented and helps to identify challenges as well as gaps for future studies. Lastly, it can sort out the best AI technique to design predictive models for WWTPs
A Supervised Neural Network-based predictive model for petrochemical wastewater treatment dataset
It is understood that water is the most valuable natural resource and as like wastewater treatment plants are necessary base to control the environmental balance where they are installed. To ensure good quality effluents, the dynamic and complicated wastewater treatment procedure must be handled efficiently. A global interest has been prompted in conservation, reuse, and alternative water sources due to growing treats over water supply scarcity. Water utilities are searching for more efficient ways to maintain their resources globally. The development of machine learning techniques is starting to offer real opportunities to operate water treatment systems in more efficient manners. This paperwork shows research as well as its development work implemented to predict the performance of petrochemical wastewater treatment. The data were used from a reputed chemical plant and the predictive models were developed by implementation of Backpropagation Neural Network using sample datasets with the parameters of wastewater dataset
Predictive models using supervised neural network for pollutant removal efficiency in petrochemical wastewater treatment
The important process in wastewater treatment is the removal of pollutants, and the dataset having so many features may cause difficulty training the data and predicting key variables. This work aims to propose set parameters through normalization techniques, feature selection techniques, and AI techniques. The datasets have 36 features and a key parameter, and experimental datasets contain 628. Constant factor, Z-score, and Min-max normalization are the normalization techniques used to normalize the petrochemical wastewater dataset. SelectKBest, ExtraTreeClassifier, PCA, and RFE are the feature selection techniques for data mining. Then finally done with AI implementation with the help of a supervised neural network technique called backpropagation neural network (BPNN)
