3,235 research outputs found

    Capillary radiator Patent

    Get PDF
    Capillary radiator for carrying heat transfer liquid in planetary spacecraft structure

    Video enhancement of X-ray and neutron radiographs

    Get PDF
    System was devised for displaying radiographs on television screen and enhancing fine detail in picture. System uses analog-computer circuits to process television signal from low-noise television camera. Enhanced images are displayed in black and white and can be controlled to vary degree of enhancement and magnification of details in either radiographic transparencies or opaque photographs

    High temperature heat source Patent

    Get PDF
    High temperature source of thermal radiatio

    Cyclic switch Patent

    Get PDF
    High dc switch for causing abrupt, cyclic, decreases of current to operate under zero or varying gravity condition

    Concepts and techniques for ultrasonic evaluation of material mechanical properties

    Get PDF
    Ultrasonic methods that can be used for material strength are reviewed. Emergency technology involving advanced ultrasonic techniques and associated measurements is described. It is shown that ultrasonic NDE is particularly useful in this area because it involves mechanical elastic waves that are strongly modulated by morphological factors that govern mechanical strength and also dynamic failure modes. These aspects of ultrasonic NDE are described in conjunction with advanced approaches and theoretical concepts for signal acquisition and analysis for materials characterization. It is emphasized that the technology is in its infancy and that much effort is still required before the techniques and concepts can be transferred from laboratory to field conditions

    A review of issues and strategies in nondestructive evaluation of fiber reinforced structural composites

    Get PDF
    Techniques for quantitative assessment of the mechanical strength and integrity of fiber composites during manufacture and service and following repair operations are presented. Problems and approaches are discussed relative to acceptance criteria, calibrating standards, and methods for nondestructive evaluation of composites in strength-critical applications. Acousto-ultrasonic techniques provide the methods of choice in this area

    The feasibility of ranking material fracture toughness by ultrasonic attenuation measurements

    Get PDF
    A preliminary study was conducted to assess the feasibility of ultrasonically ranking material fracture toughness. Specimens of two grades of maraging steel for which fracture toughness values were measured were subjected to ultrasonic probing. The slope of the attenuation coefficient versus frequency curve was empirically correlated with the plane strain fracture toughness value for each grade of steel

    Concepts for interrelating ultrasnic attenuation, microstrucutre and fracture toughness in polycrystalline solids

    Get PDF
    Conceptual models are advanced for explaining and predicting empirical correlations found between ultrasonic measurements and fracture toughness of polycrystalline solids. The models lead to insights concerning microstructural factors governing fracture processes and associated stress wave interactions. Analysis of the empirical correlations suggested by the models indicate that, in addition to grain size and shape, grain boundary reflections, elastic anisotropy, and dislocation damping are factors that underly both fracture toughness and ultrasonic attenuation. One outcome is that ultrasonic attenuation can predict the size of crack blunting or process zones that develop in the vicinity active cracks in metals. This forms a basis for ultrasonic ranking according to variations in fracture toughness

    Computer signal processing for ultrasonic attenuation and velocity measurements for material property characterizations

    Get PDF
    Instrumentation and computer programming concepts that were developed for ultrasonic materials characterization are described. Methods that facilitate velocity and attenuation measurements are outlined. The apparatus described is based on a broadband, buffered contact probe using a pulse-echo approach for simultaneously measuring velocity and attenuation. Instrumentation, specimen condition, and signal acquisition and acceptance criteria are discussed. Typical results with some representative materials are presented

    Correlations among ultrasonic propagation factors and fracture toughness properties of metallic materials

    Get PDF
    Empirical evidence was developed to show that a close relation exists among fracture toughness, yield strength, and ultrasonic attenuation properties of metallic materials. The evidence was obtained by ultrasonic probing of specimens of two maraging steels and a titanium alloy. It was concluded that nondestructive ultrasonic methods can be used to indirectly evaluate fracture-related material properties. The results suggest that these nondestructive ultrasonic measurements can also serve as an adjunct to destructive testing, measurement, and analysis of fracture properties
    corecore