2,841 research outputs found
Ordered Statistics Vertex Extraction and Tracing Algorithm (OSVETA)
We propose an algorithm for identifying vertices from three dimensional (3D)
meshes that are most important for a geometric shape creation. Extracting such
a set of vertices from a 3D mesh is important in applications such as digital
watermarking, but also as a component of optimization and triangulation. In the
first step, the Ordered Statistics Vertex Extraction and Tracing Algorithm
(OSVETA) estimates precisely the local curvature, and most important
topological features of mesh geometry. Using the vertex geometric importance
ranking, the algorithm traces and extracts a vector of vertices, ordered by
decreasing index of importance.Comment: Accepted for publishing and Copyright transfered to Advances in
Electrical and Computer Engineering, November 23th 201
LDPC Codes Which Can Correct Three Errors Under Iterative Decoding
In this paper, we provide necessary and sufficient conditions for a
column-weight-three LDPC code to correct three errors when decoded using
Gallager A algorithm. We then provide a construction technique which results in
a code satisfying the above conditions. We also provide numerical assessment of
code performance via simulation results.Comment: 5 pages, 3 figures, submitted to IEEE Information Theory Workshop
(ITW), 200
Analysis and Design of Finite Alphabet Iterative Decoders Robust to Faulty Hardware
This paper addresses the problem of designing LDPC decoders robust to
transient errors introduced by a faulty hardware. We assume that the faulty
hardware introduces errors during the message passing updates and we propose a
general framework for the definition of the message update faulty functions.
Within this framework, we define symmetry conditions for the faulty functions,
and derive two simple error models used in the analysis. With this analysis, we
propose a new interpretation of the functional Density Evolution threshold
previously introduced, and show its limitations in case of highly unreliable
hardware. However, we show that under restricted decoder noise conditions, the
functional threshold can be used to predict the convergence behavior of FAIDs
under faulty hardware. In particular, we reveal the existence of robust and
non-robust FAIDs and propose a framework for the design of robust decoders. We
finally illustrate robust and non-robust decoders behaviors of finite length
codes using Monte Carlo simulations.Comment: 30 pages, submitted to IEEE Transactions on Communication
Two-Bit Bit Flipping Decoding of LDPC Codes
In this paper, we propose a new class of bit flipping algorithms for
low-density parity-check (LDPC) codes over the binary symmetric channel (BSC).
Compared to the regular (parallel or serial) bit flipping algorithms, the
proposed algorithms employ one additional bit at a variable node to represent
its "strength." The introduction of this additional bit increases the
guaranteed error correction capability by a factor of at least 2. An additional
bit can also be employed at a check node to capture information which is
beneficial to decoding. A framework for failure analysis of the proposed
algorithms is described. These algorithms outperform the Gallager A/B algorithm
and the min-sum algorithm at much lower complexity. Concatenation of two-bit
bit flipping algorithms show a potential to approach the performance of belief
propagation (BP) decoding in the error floor region, also at lower complexity.Comment: 6 pages. Submitted to IEEE International Symposium on Information
Theory 201
- …
