455 research outputs found

    Gauge-Invariant Approach to Meson Photoproduction Including the Final-State Interaction

    Get PDF
    A gauge-invariant formalism is presented for the practical treatment of photo- and electroproduction of pseudoscalar mesons off nucleons that allows an explicit incorporation of hadronic final-state interactions. The semi-phenomenological approach is based on a field theory developed by one of the authors. It generalizes an earlier approach by allowing for systematic improvement of approximations in a controlled manner. The practical feasibility is illustrated by applying the lowest-order result to the photoproduction of both neutral and charged pions.Comment: Plenary talk given at the N*2005 Workshop (Oct. 2005, Tallahassee, FL); to appear in the Proceedings (to be publ. by WorldScientific

    Technological development of enterprise: modern direction and strategies

    Get PDF
    Обґрунтовано необхідність технологічного розвитку як фактора конкурентних переваг підприємства. Охарактеризовано напрями і види стратегій технологічного розвитку, визначені завдання технологічного реінжинірингу на підприємстві.The necessity of technological development, as a factor of competitive advantages of enterprise was grounded. The directions and kinds of the technological development strategies were characterized, the tasks of technological reengineering at an enterprise were described

    Top-of-the-Atmosphere Shortwave Flux Estimation from UV Observations: An Empirical Approach

    Get PDF
    Measurements of top of the atmosphere (TOA) radiation are essential to the understanding of Earth's climate. Clouds, aerosols, and ozone (0,) are among the most important agents impacting the Earth's short-wave (SW) radiation budget. There are several sensors in orbit that provide independent information related to the Earth's SW radiation budget. Having coincident information from these sensors is important for understanding their potential contributions. The A-train constellation of satellites provides a unique opportunity to analyze near-simultaneous data from several of these sensors. They include the Ozone Monitoring Instrument (OMI), on the NASA Aura satellite, that makes TOA hyper-spectral measurements from ultraviolet (UV) to visible wavelengths, and Clouds and the Earth's Radiant Energy System (CERES) instrument, on the NASA Aqua satellite, that makes broadband measurements in both the long- and short-wave. OMI measurements have been successfully utilized to derive the information on trace gases (e.g., 0 1, NO" and SO,), clouds, and absorbing aerosols. TOA SW fluxes are estimated using a combination of data from CERES and the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS). In this paper, OMI retrievals of cloud/aerosol parameters and 0 1 have been collocated with CERES TOA SW flux retrievals. We use this collocated data to develop a neural network that estimates TOA shortwave flux globally over ocean using data from OMI and meteorological analyses. This input data include the effective cloud fraction, cloud optical centroid pressure (OCP), total-column 0" and sun-satellite viewing geometry from OMI as well as wind speed and water vapor from the Goddard Earth Observing System 5 Modern Era Retrospective-analysis for Research and Applications (GEOS-5 MERRA) along with a climatology of chlorophyll content. We train the neural network using a subset of CERES retrievals of TOA SW flux as the target output (truth) and withhold a different subset of the CERES data to be used for validation

    Detection of Multi-Layer and Vertically-Extended Clouds Using A-Train Sensors

    Get PDF
    The detection of mUltiple cloud layers using satellite observations is important for retrieval algorithms as well as climate applications. In this paper, we describe a relatively simple algorithm to detect multiple cloud layers and distinguish them from vertically-extended clouds. The algorithm can be applied to coincident passive sensors that derive both cloud-top pressure from the thermal infrared observations and an estimate of solar photon pathlength from UV, visible, or near-IR measurements. Here, we use data from the A-train afternoon constellation of satellites: cloud-top pressure, cloud optical thickness, the multi-layer flag from the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) and the optical centroid cloud pressure from the Aura Ozone Monitoring Instrument (OMI). For the first time, we use data from the CloudSat radar to evaluate the results of a multi-layer cloud detection scheme. The cloud classification algorithms applied with different passive sensor configurations compare well with each other as well as with data from CloudSat. We compute monthly mean fractions of pixels containing multi-layer and vertically-extended clouds for January and July 2007 at the OMI spatial resolution (l2kmx24km at nadir) and at the 5kmx5km MODIS resolution used for infrared cloud retrievals. There are seasonal variations in the spatial distribution of the different cloud types. The fraction of cloudy pixels containing distinct multi-layer cloud is a strong function of the pixel size. Globally averaged, these fractions are approximately 20% and 10% for OMI and MODIS, respectively. These fractions may be significantly higher or lower depending upon location. There is a much smaller resolution dependence for fractions of pixels containing vertically-extended clouds (approx.20% for OMI and slightly less for MODIS globally), suggesting larger spatial scales for these clouds. We also find higher fractions of vertically-extended clouds over land as compared with ocean, particularly in the tropics and summer hemisphere

    Observations over Hurricanes from the Ozone Monitoring Instrument

    Get PDF
    There is an apparent inconsistency between the total column ozone derived from the total ozone mapping spectrometer (TOMS) and aircraft observations within the eye region of tropical cyclones. The higher spectral resolution, coverage, and sampling of the ozone monitoring instrument (OMI) on NASA s Aura satellite as compared with TOMS allows for improved ozone retrievals by including estimates of cloud pressure derived simultaneously using the effects of rotational Raman scattering. The retrieved cloud pressures from OM1 are more appropriate than the climatological cloud-top pressures based on infrared measurements used in the TOMS and initial OM1 algorithms. We find that total ozone within the eye of hurricane Katrina is significantly overestimated when we use climatological cloud pressures. Using OMI-retrieved cloud pressures, total ozone in the eye is similar to that in the surrounding area. The corrected total ozone is in better agreement with aircraft measurements that imply relatively small or negligible amounts of stratospheric intrusion into the eye region of tropical cyclones

    OMMYDCLD: a New A-train Cloud Product that Co-locates OMI and MODIS Cloud and Radiance Parameters onto the OMI Footprint

    Get PDF
    Clouds cover approximately 60% of the earth's surface. When obscuring the satellite's field of view (FOV), clouds complicate the retrieval of ozone, trace gases and aerosols from data collected by earth observing satellites. Cloud properties associated with optical thickness, cloud pressure, water phase, drop size distribution (DSD), cloud fraction, vertical and areal extent can also change significantly over short spatio-temporal scales. The radiative transfer models used to retrieve column estimates of atmospheric constituents typically do not account for all these properties and their variations. The OMI science team is preparing to release a new data product, OMMYDCLD, which combines the cloud information from sensors on board two earth observing satellites in the NASA A-Train: Aura/OMI and Aqua/MODIS. OMMYDCLD co-locates high resolution cloud and radiance information from MODIS onto the much larger OMI pixel and combines it with parameters derived from the two other OMI cloud products: OMCLDRR and OMCLDO2. The product includes histograms for MODIS scientific data sets (SDS) provided at 1 km resolution. The statistics of key data fields - such as effective particle radius, cloud optical thickness and cloud water path - are further separated into liquid and ice categories using the optical and IR phase information. OMMYDCLD offers users of OMI data cloud information that will be useful for carrying out OMI calibration work, multi-year studies of cloud vertical structure and in the identification and classification of multi-layer clouds

    Fast Simulators for Satellite Cloud Optical Centroid Pressure Retrievals, 1. Evaluation of OMI Cloud Retrievals

    Get PDF
    The cloud Optical Centroid Pressure (OCP), also known as the effective cloud pressure, is a satellite-derived parameter that is commonly used in trace-gas retrievals to account for the effects of clouds on near-infrared through ultraviolet radiance measurements. Fast simulators are desirable to further expand the use of cloud OCP retrievals into the operational and climate communities for applications such as data assimilation and evaluation of cloud vertical structure in general circulation models. In this paper, we develop and validate fast simulators that provide estimates of the cloud OCP given a vertical profile of optical extinction. We use a pressure-weighting scheme where the weights depend upon optical parameters of clouds and/or aerosol. A cloud weighting function is easily extracted using this formulation. We then use fast simulators to compare two different satellite cloud OCP retrievals from the Ozone Monitoring Instrument (OMI) with estimates based on collocated cloud extinction profiles from a combination of CloudS at radar and MODIS visible radiance data. These comparisons are made over a wide range of conditions to provide a comprehensive validation of the OMI cloud OCP retrievals. We find generally good agreement between OMI cloud OCPs and those predicted by CloudSat. However, the OMI cloud OCPs from the two independent algorithms agree better with each other than either does with the estimates from CloudSat/MODIS. Differences between OMI cloud OCPs and those based on CloudSat/MODIS may result from undetected snow/ice at the surface, cloud 3-D effects, low altitude clouds missed by CloudSat, and the fact that CloudSat only observes a relatively small fraction of an OMI field-of-view

    Effects of Surface BRDF on the OMI Cloud and NO2 Retrievals: A New Approach Based on Geometry-Dependent Lambertian Equivalent Reflectivity (GLER) Derived from MODIS

    Get PDF
    The Ozone Monitoring Instrument (OMI) cloud and NO2 algorithms use a monthly gridded surface reflectivity climatology that does not depend upon the observation geometry. In reality, reflection of incoming direct and diffuse solar light from land or ocean surfaces is sensitive to the sun sensor geometry. This dependence is described by the bidirectional reflectance distribution function (BRDF). To account for the BRDF, we propose to use a new concept of geometry-dependent Lambertian equivalent reflectivity (GLER). Implementation within the existing OMI cloud and NO2 retrieval infrastructure requires changes only to the input surface reflectivity database. GLER is calculated using a vector radiative transfer model with high spatial resolution BRDF information from MODIS over land and the Cox Munk slope distribution over ocean with a contribution from water-leaving radiance. We compare GLER and climatological LER at 466 nm, which is used in the OMI O2-O2cloud algorithm to derive effective cloud fractions. A detailed comparison of the cloud fractions and pressures derived with climatological and GLERs is carried out. GLER and corresponding retrieved cloud products are then used as input to the OMI NO2 algorithm. We find that replacing the climatological OMI-based LERs with GLERs can increase NO2 vertical columns by up to 50 % in highly polluted areas; the differences include both BRDF effects and biases between the MODIS and OMI-based surface reflectance data sets. Only minor changes to NO2 columns (within 5 %) are found over unpolluted and overcast areas
    corecore