60 research outputs found

    Establishing A Continuum of Care to Improve Follow-Up Rates for Survivors of Sexual Assault

    Get PDF
    Introduction. In 2011 there were over 1000 reported sexual assaults in Vermont. Current recommendations suggest that survivors of sexual assault (survivors) receive follow- up care within two weeks after an initial Sexual Assault Nurse Examiner (SANE) exam, but fewer than 15% receive documented follow-up. A published report has demonstrated increased follow-up to over 80% when appointments are scheduled prior to discharge from the emergency department (ED).https://scholarworks.uvm.edu/comphp_gallery/1082/thumbnail.jp

    Counteranion and Solvent Assistance in Ruthenium-Mediated Alkyne to Vinylidene Isomerizations

    Get PDF
    The complex [Cp*RuCl(iPr2PNHPy)] (1) reacts with 1-alkynes HC≡CR (R = COOMe, C6H4CF3) in dichloromethane furnishing the corresponding vinylidene complexes [Cp*Ru≡C≡CHR(iPr2PNHPy)]Cl (R = COOMe (2a- Cl), C6H4CF3 (2b-Cl)), whereas reaction of 1 with NaBPh4 in MeOH followed by addition of HC≡CR (R = COOMe, C6H4CF3) yields the metastable π-alkyne complexes [Cp*Ru(η2-HC≡CR)(iPr2PNHPy)][BPh4] (R = COOMe (3a-BPh4), C6H4CF3 (3b-BPh4)). The transformation of 3a-BPh4/3b-BPh4 into their respective vinylidene isomers in dichloromethane is very slow and requires hours to its completion. However, this process is accelerated by addition of LiCl in methanol solution. Reaction of 1 with HC≡CR (R = COOMe, C6H4CF3) in MeOH goes through the intermediacy of the π-alkyne complexes [Cp*Ru(η2-HC≡CR)(iPr2PNHPy)]Cl (R = COOMe (3a-Cl), C6H4CF3 (3b-Cl)), which rearrange to vinylidenes in minutes, i.e., much faster than their counterparts containing the [BPh4]− anion. The kinetics of these isomerizations has been studied in solution by NMR. With the help of DFT studies, these observations have been interpreted in terms of chloride- and methanolassisted hydrogen migrations. Calculations suggest participation of a hydrido−alkynyl intermediate in the process, in which the hydrogen atom can be transferred from the metal to the β-carbon by means of species with weak basic character acting as proton shuttles

    Mechanistic Studies of Ethylene Hydrophenylation Catalyzed by Bipyridyl Pt(II) Complexes

    Get PDF
    This article discusses mechanistic studies of ethylene hydrophenylation catalyzed by bipyridyl Pt(II) complexes

    Addition-Elimination Reactions across the M-C Bond of Metal N-Heterocyclic Carbenes

    Get PDF
    Silyl, phosphinyl, stannyl, and boryl reagents can be added across the neutral metal-carbon dative bond in d0 f-block metal N-heterocyclic carbene complexes in a reversible manner, allowing additional functional groups to be incorporated into redox-inactive organo-f-block compounds.</p

    Catalytic Transformations of Alkynes via Ruthenium Vinylidene and Allenylidene Intermediates

    Get PDF
    NOTICE: This is the peer reviewed version of the following book chapter: Varela J. A., González-Rodríguez C., Saá C. (2014). Catalytic Transformations of Alkynes via Ruthenium Vinylidene and Allenylidene Intermediates. In: Dixneuf P., Bruneau C. (eds) Ruthenium in Catalysis. Topics in Organometallic Chemistry, vol 48, pp. 237-287. Springer, Cham. [doi: 10.1007/3418_2014_81]. This article may be used for non-commercial purposes in accordance with Springer Verlag Terms and Conditions for self-archiving.Vinylidenes are high-energy tautomers of terminal alkynes and they can be stabilized by coordination with transition metals. The resulting metal-vinylidene species have interesting chemical properties that make their reactivity different to that of the free and metal π-coordinated alkynes: the carbon α to the metal is electrophilic whereas the β carbon is nucleophilic. Ruthenium is one of the most commonly used transition metals to stabilize vinylidenes and the resulting species can undergo a range of useful transformations. The most remarkable transformations are the regioselective anti-Markovnikov addition of different nucleophiles to catalytic ruthenium vinylidenes and the participation of the π system of catalytic ruthenium vinylidenes in pericyclic reactions. Ruthenium vinylidenes have also been employed as precatalysts in ring closing metathesis (RCM) or ring opening metathesis polymerization (ROMP). Allenylidenes could be considered as divalent radicals derived from allenes. In a similar way to vinylidenes, allenylidenes can be stabilized by coordination with transition metals and again ruthenium is one of the most widely used metals. Metalallenylidene complexes can be easily obtained from terminal propargylic alcohols by dehydration of the initially formed metal-hydroxyvinylidenes, in which the reactivity of these metal complexes is based on the electrophilic nature of Cα and Cγ, while Cβ is nucleophilic. Catalytic processes based on nucleophilic additions and pericyclic reactions involving the π system of ruthenium allenylidenes afford interesting new structures with high selectivity and atom economy

    Coordinatively Unsaturated T-Shaped Platinum(II) Complexes Stabilized by Small N-Heterocyclic Carbene Ligands. Synthesis and Cyclometalation

    Full text link

    Endogenous Candida Endophthalmitis Associated With Heroin Use

    No full text
    corecore