416 research outputs found
Reduction in BACE1 decreases body weight, protects against diet-induced obesity and enhances insulin sensitivity in mice
Insulin resistance and impaired glucose homoeostasis are important indicators of Type 2 diabetes and are early risk factors of AD (Alzheimer's disease). An essential feature of AD pathology is the presence of BACE1 (β-site amyloid precursor protein-cleaving enzyme 1), which regulates production of toxic amyloid peptides. However, whether BACE1 also plays a role in glucose homoeostasis is presently unknown. We have used transgenic mice to analyse the effects of loss of BACE1 on body weight, and lipid and glucose homoeostasis. BACE1−/− mice are lean, with decreased adiposity, higher energy expenditure, and improved glucose disposal and peripheral insulin sensitivity than wild-type littermates. BACE1−/− mice are also protected from diet-induced obesity. BACE1-deficient skeletal muscle and liver exhibit improved insulin sensitivity. In a skeletal muscle cell line, BACE1 inhibition increased glucose uptake and enhanced insulin sensitivity. The loss of BACE1 is associated with increased levels of UCP1 (uncoupling protein 1) in BAT (brown adipose tissue) and UCP2 and UCP3 mRNA in skeletal muscle, indicative of increased uncoupled respiration and metabolic inefficiency. Thus BACE1 levels may play a critical role in glucose and lipid homoeostasis in conditions of chronic nutrient excess. Therefore strategies that ameliorate BACE1 activity may be important novel approaches for the treatment of diabetes
Persistent Dystrophin Protein Restoration 90 Days after a Course of Intraperitoneally Administered Naked 2′OMePS AON and ZM2 NP-AON Complexes in mdx Mice
In Duchenne muscular dystrophy, the exon-skipping approach has obtained proof of concept in animal models, myogenic cell cultures, and following local and systemic administration in Duchenne patients. Indeed, we have previously demonstrated that low doses (7.5 mg/Kg/week) of
2
-O-methyl-phosphorothioate antisense oligoribonucleotides (AONs) adsorbed onto ZM2 nanoparticles provoke widespread dystrophin restoration 7 days after intraperitoneal treatment in mdx mice. In this study, we went on to test whether this dystrophin restoration was still measurable 90 days from the end of the same treatment. Interestingly, we found that both western blot and immunohistochemical analysis (up to 7% positive fibres) were still able to detect dystrophin protein in the skeletal muscles of ZM2-AON-treated mice at this time, and the level of exon-23 skipping could still be assessed by RT real-time PCR (up to 10% of skipping percentage). In contrast, the protein was undetectable by western blot analysis in the skeletal muscles of mdx mice treated with an identical dose of naked AON, and the percentage of dystrophin-positive fibres and exon-23 skipping were reminiscent of those of untreated mdx mice. Our data therefore demonstrate the long-term residual efficacy of this systemic low-dose treatment and confirm the protective effect nanoparticles exert on AON molecules
Persistent Dystrophin Protein Restoration 90 Days after a Course of Intraperitoneally Administered Naked 2′OMePS AON and ZM2 NP-AON Complexes in mdx Mice
In Duchenne muscular dystrophy, the exon-skipping approach has obtained proof of concept in animal models, myogenic cell cultures, and following local and systemic administration in Duchenne patients. Indeed, we have previously demonstrated that low doses (7.5 mg/Kg/week) of
2
-O-methyl-phosphorothioate antisense oligoribonucleotides (AONs) adsorbed onto ZM2 nanoparticles provoke widespread dystrophin restoration 7 days after intraperitoneal treatment in mdx mice. In this study, we went on to test whether this dystrophin restoration was still measurable 90 days from the end of the same treatment. Interestingly, we found that both western blot and immunohistochemical analysis (up to 7% positive fibres) were still able to detect dystrophin protein in the skeletal muscles of ZM2-AON-treated mice at this time, and the level of exon-23 skipping could still be assessed by RT real-time PCR (up to 10% of skipping percentage). In contrast, the protein was undetectable by western blot analysis in the skeletal muscles of mdx mice treated with an identical dose of naked AON, and the percentage of dystrophin-positive fibres and exon-23 skipping were reminiscent of those of untreated mdx mice. Our data therefore demonstrate the long-term residual efficacy of this systemic low-dose treatment and confirm the protective effect nanoparticles exert on AON molecules
The FSHD jigsaw: are we placing the tiles in the right position?
Purpose of review: Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common myopathies, involving over 870,000 people worldwide and over 20 FSHD national registries. Our purpose was to summarize the main objectives of the scientific community on this topic and the moving trajectories of research from the past to the present. Recent findings: To date, research is mainly oriented toward deciphering the molecular and pathogenetic basis of the disease by investigating DUX4-mediated muscle alterations. Accordingly, FSHD drug development has been escalating in the last years in an attempt to silence DUX4 or to block its downstream effectors. Breakthroughs in the field include the awareness that new biomarkers and outcome measures are required for tracking disease progression and patient stratification. The need to develop personalized therapeutic strategies is also crucial according to the phenotypic variability observed in FSHD subjects. Summary: We analysed 121 literature reports published between 2021 and 2023 to assess the most recent advances in FSHD clinical and molecular research
Physical training promotes remodeling of the skeletal muscle extracellular matrix: An ultrastructural study in a murine model of Down syndrome
Down syndrome (DS) is a genetically based disease caused by triplication of chromosome 21. DS is characterized by multi-systemic premature aging associated with deficit in motor coordination, balance, and postural control. Using a morphological, morphometrical, and immunocytochemical ultrastructural approach, this study investigated in vastus lateralis muscle of Ts65Dn mouse, a murine model of DS, the effect of an adapted physical training on the extracellular matrix (ECM) characteristics and whether the forecasted exercise-induced ECM remodeling impacts on sarcomere organization. Morphometry demonstrated thicker basement membrane and larger collagen bundles with larger interfibrillar spacing as well as irregularly arrayed myofibrils and lower telethonin density on Z-lines in trisomic versus euploid sedentary mice. In agreement with the multi-systemic premature aging described in DS, these ECM alterations were similar to those previously observed in skeletal muscle of aged mice. Adapted physical training induced remodeling of ECM in both trisomic and euploid mice, that is, enlargement of the collagen bundles associated with hypertrophy of collagen fibrils and reduction of the interfibrillar spacing. A re-alignment of the myofibrils and a higher telethonin density on Z-line was found in trisomic mice. Altogether, our findings suggest that physical training is an effective tool in limiting/counteracting the trisomy-associated musculoskeletal structural anomalies. The current findings constitute a solid experimental background for further study investigating the possible positive effect of physical training on skeletal muscle performance. RESEARCH HIGHLIGHTS: Vastus lateralis muscle of trisomic mice shows aging-like alterations of extracellular matrix. Training promotes extracellular matrix remodeling. Training may be an effective tool to counteract trisomy-associated alterations of skeletal muscle
Non-hematologic toxicity of bortezomib in multiple myeloma: the neuromuscular and cardiovascular adverse effects
The overall approach to the treatment of multiple myeloma (MM) has undergone several changes during the past decade. and proteasome inhibitors (PIs) including bortezomib, carfilzomib, and ixazomib have considerably improved the outcomes in affected patients. The first-in-class selective PI bortezomib has been initially approved for the refractory forms of the disease but has now become, in combination with other drugs, the backbone of the frontline therapy for newly diagnosed MM patients, as well as in the maintenance therapy and relapsed/refractory setting. Despite being among the most widely used and highly effective agents for MM, bortezomib can induce adverse events that potentially lead to early discontinuation of the therapy with negative effects on the quality of life and outcome of the patients. Although peripheral neuropathy and myelosuppression have been recognized as the most relevant bortezomib-related adverse effects, cardiac and skeletal muscle toxicities are relatively common in MM treated patients, but they have received much less attention. Here we review the neuromuscular and cardiovascular side effects of bortezomib. focusing on the molecular mechanisms underlying its toxicity. We also discuss our preliminary data on the effects of bortezomib on skeletal muscle tissue in mice receiving the drug
Unusual multisystemic involvement and a novel BAG3 mutation revealed by NGS screening in a large cohort of myofibrillar myopathies
Background: Myofibrillar myopathies (MFM) are a group of phenotypically and genetically heterogeneous neuromuscular disorders, which are characterized by protein aggregations in muscle fibres and can be associated with multisystemic involvement. Methods: We screened a large cohort of 38 index patients with MFM for mutations in the nine thus far known causative genes using Sanger and next generation sequencing (NGS). We studied the clinical and histopathological characteristics in 38 index patients and five additional relatives (n = 43) and particularly focused on the associated multisystemic symptoms. Results: We identified 14 heterozygous mutations (diagnostic yield of 37%), among them the novel p.Pro209Gln mutation in the BAG3 gene, which was associated with onset in adulthood, a mild phenotype and an axonal sensorimotor polyneuropathy, in the absence of giant axons at the nerve biopsy. We revealed several novel clinical phenotypes and unusual multisystemic presentations with previously described mutations: hearing impairment with a FLNC mutation, dysphonia with a mutation in DES and the first patient with a FLNC mutation presenting respiratory insufficiency as the initial symptom. Moreover, we described for the first time respiratory insufficiency occurring in a patient with the p.Gly154Ser mutation in CRYAB. Interestingly, we detected a polyneuropathy in 28% of the MFM patients, including a BAG3 and a MYOT case, and hearing impairment in 13%, including one patient with a FLNC mutation and two with mutations in the DES gene. In four index patients with a mutation in one of the MFM genes, typical histological findings were only identified at the ultrastructural level (29%). Conclusions: We conclude that extraskeletal symptoms frequently occur in MFM, particularly cardiac and respiratory involvement, polyneuropathy and/or deafness. BAG3 mutations should be considered even in cases with a mild phenotype or an adult onset. We identified a genetic defect in one of the known genes in less than half of the MFM patients, indicating that more causative genes are still to be found. Next generation sequencing techniques should be helpful in achieving this aim
Human Mutated MYOT and CRYAB Genes Cause a Myopathic Phenotype in Zebrafish
Myofibrillar myopathies (MFMs) are a group of hereditary neuromuscular disorders sharing common histological features, such as myofibrillar derangement, Z-disk disintegration, and accumulation of degradation products into protein aggregates. They are caused by mutations in several genes that encode either structural proteins or molecular chaperones. Nevertheless, the mechanisms by which mutated genes result in protein aggregation are still unknown. To unveil the role of myotilin and αB-crystallin in the pathogenesis of MFM, we injected zebrafish fertilized eggs at one-cell stage with expression plasmids harboring cDNA sequences of human wildtype or mutated MYOT (p.Ser95Ile) and human wildtype or mutated CRYAB (p.Gly154Ser). We evaluated the effects on fish survival, motor behavior, muscle structure and development. We found that transgenic zebrafish showed morphological defects that were more severe in those overexpressing mutant genes which developed a myopathic phenotype consistent with that of human myofibrillar myopathy including the formation of protein aggregates. Results indicate that pathogenic mutations in myotilin and αB-crystallin genes associated with MFM cause a structural and functional impairment of the skeletal muscle in zebrafish, thereby making this non-mammalian organism a powerful model to dissect disease pathogenesis and find possible druggable targets
Advanced cellular models for rare disease study: exploring neural, muscle and skeletal organoids
Organoids are self-organized, three-dimensional structures derived from stem cells that can mimic the structure and physiology of human organs. Patient-specific induced pluripotent stem cells (iPSCs) and 3D organoid model systems allow cells to be analyzed in a controlled environment to simulate the characteristics of a given disease by modeling the underlying pathophysiology. The recent development of 3D cell models has offered the scientific community an exceptionally valuable tool in the study of rare diseases, overcoming the limited availability of biological samples and the limitations of animal models. This review provides an overview of iPSC models and genetic engineering techniques used to develop organoids. In particular, some of the models applied to the study of rare neuronal, muscular and skeletal diseases are described. Furthermore, the limitations and potential of developing new therapeutic approaches are discussed
Chronic graft-versus-host-disease-related polymyositis: a 17-months-old child with a rare and late complication of haematopoietic stem cell transplantation
Background: Chronic graft versus host disease (cGVHD) occurs in 20-30% of paediatric patients receiving haemopoietic stem cell transplantation (HSCT). Neuromuscular disorders such as polymyositis are considered a rare and distinctive but non-diagnostic manifestation of cGVHD and, in the absence of other characteristic signs and symptoms, biopsy is highly recommended to exclude other causes. Case report: We report a case of a 17-months-old child affected by hemophagocytic lymphohistiocytosis who underwent a matched unrelated donor haematopoietic stem cell transplantation (HSCT). She developed severe cGVHD-related polymyositis that was successfully treated with high-dose steroid therapy, rituximab and sirolimus. Conclusions: This is the first case of cGVHD-related-polymyositis described in a pediatric patient which was successfully treated with rituximab
- …
