1,735 research outputs found

    Towards a realistic in vitro experience of epidural Tuohy needle insertion.

    Get PDF
    The amount of pressure exerted on the syringe and the depth of needle insertion are the two key factors for successfully carrying out epidural procedure. The force feedback from the syringe plunger is helpful in judging the loss of pressure, and the depth of the needle insertion is crucial in identifying when the needle is precisely placed in the epidural space. This article presents the development of two novel wireless devices to measure these parameters to precisely guide the needle placement in the epidural space. These techniques can be directly used on patients or implemented in a simulator for improving the safety of procedure. A pilot trial has been conducted to collect depth and pressure data with the devices on a porcine cadaver. These measurements are then combined to accurately configure a haptic device for creating a realistic in vitro experience of epidural needle insertion

    How dynamic are ice-stream beds?

    Get PDF
    Projections of sea-level rise contributions from West Antarctica's dynamically thinning ice streams contain high uncertainty because some of the key processes involved are extremely challenging to observe. An especially poorly observed parameter is sub-decadal stability of ice-stream beds, which may be important for subglacial traction, till continuity and landform development. Only two previous studies have made repeated geophysical measurements of ice-stream beds at the same locations in different years, but both studies were limited in spatial extent. Here, we present the results from repeat radar measurements of the bed of Pine Island Glacier, West Antarctica, conducted 3–6 years apart, along a cumulative ∼ 60 km of profiles. Analysis of the correlation of bed picks between repeat surveys shows that 90 % of the bed displays no significant change despite the glacier increasing in speed by up to 40 % over the last decade. We attribute the negligible detection of morphological change at the bed of Pine Island Glacier to the ubiquitous presence of a deforming till layer, wherein sediment transport is in steady state, such that sediment is transported along the basal interface without inducing morphological change to the radar-sounded basal interface. Given the precision of our measurements, the upper limit of subglacial erosion observed here is 500 mm a‾¹, far exceeding erosion rates reported for glacial settings from proglacial sediment yields, but substantially below subglacial erosion rates of 1.0 m a‾¹ previously reported from repeat geophysical surveys in West Antarctica

    Desensitization protocol enabling pediatric crossmatch-positive renal transplantation: successful HLA-antibody-incompatible renal transplantation of two highly sensitized children

    Get PDF
    BACKGROUND: Renal transplantation improves quality of life (QoL) and survival in children requiring renal replacement therapy (RRT). Sensitization with development of a broad-spectrum of anti-HLA antibodies as a result of previous transplantation or after receiving blood products is an increasing problem. There are no published reports of desensitization protocols in children allowing renal transplantation from HLA-antibody-incompatible living donors. METHODS: We adopted our well-established adult desensitization protocol for this purpose and undertook HLA antibody-incompatible living donor renal transplants in two children: a 14-year-old girl and a 13-year-old boy. RESULTS: After 2 and 1.5 years of follow-up, respectively, both patients have stable renal allograft function despite a rise in donor-specific antibodies in one case. CONCLUSIONS: HLA-incompatible transplantation should be considered in selected cases for sensitized children

    Magnetism, FeS colloids, and Origins of Life

    Full text link
    A number of features of living systems: reversible interactions and weak bonds underlying motor-dynamics; gel-sol transitions; cellular connected fractal organization; asymmetry in interactions and organization; quantum coherent phenomena; to name some, can have a natural accounting via physicalphysical interactions, which we therefore seek to incorporate by expanding the horizons of `chemistry-only' approaches to the origins of life. It is suggested that the magnetic 'face' of the minerals from the inorganic world, recognized to have played a pivotal role in initiating Life, may throw light on some of these issues. A magnetic environment in the form of rocks in the Hadean Ocean could have enabled the accretion and therefore an ordered confinement of super-paramagnetic colloids within a structured phase. A moderate H-field can help magnetic nano-particles to not only overcome thermal fluctuations but also harness them. Such controlled dynamics brings in the possibility of accessing quantum effects, which together with frustrations in magnetic ordering and hysteresis (a natural mechanism for a primitive memory) could throw light on the birth of biological information which, as Abel argues, requires a combination of order and complexity. This scenario gains strength from observations of scale-free framboidal forms of the greigite mineral, with a magnetic basis of assembly. And greigite's metabolic potential plays a key role in the mound scenario of Russell and coworkers-an expansion of which is suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed Krishnaswami Alladi, Springer 201

    Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria)

    Get PDF
    Modern hard corals (Class Hexacorallia; Order Scleractinia) are widely studied because of their fundamental role in reef building and their superb fossil record extending back to the Triassic. Nevertheless, interpretations of their evolutionary relationships have been in flux for over a decade. Recent analyses undermine the legitimacy of traditional suborders, families and genera, and suggest that a non-skeletal sister clade (Order Corallimorpharia) might be imbedded within the stony corals. However, these studies either sampled a relatively limited array of taxa or assembled trees from heterogeneous data sets. Here we provide a more comprehensive analysis of Scleractinia (127 species, 75 genera, 17 families) and various outgroups, based on two mitochondrial genes (cytochrome oxidase I, cytochrome b), with analyses of nuclear genes (ßtubulin, ribosomal DNA) of a subset of taxa to test unexpected relationships. Eleven of 16 families were found to be polyphyletic. Strikingly, over one third of all families as conventionally defined contain representatives from the highly divergent "robust" and "complex" clades. However, the recent suggestion that corallimorpharians are true corals that have lost their skeletons was not upheld. Relationships were supported not only by mitochondrial and nuclear genes, but also often by morphological characters which had been ignored or never noted previously. The concordance of molecular characters and more carefully examined morphological characters suggests a future of greater taxonomic stability, as well as the potential to trace the evolutionary history of this ecologically important group using fossils

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    The effect of physical activity on psychological distress, cortisol and obesity: results of the farming fit intervention program

    Get PDF
    Background:Rural and regional Australians have a higher likelihood of mental illness throughout their lifetime than people living in major cities, although the underlying reasons are not yet well defined. Additionally, rural populations experience more lifestyle associated co-morbidities including obesity, diabetes and cardiovascular disease. Research conducted by the National Centre for Farmer Health between 2004 and 2009 revealed a positive correlation between obesity and psychological distress among the farming community. Chronic stress is known to overstimulate the regulation of the hypothalamic-pituitary-adrenal (HPA) axis and cortisol secretion which are associated with abdominal adiposity. Increasing physical activity may normalise cortisol secretion and thereby positively impact both physical and mental health. This paper assesses the effects of increasing physical activity on obesity, health behaviors and mental health in Victorian farming men and women.Methods:Farming Fit was a six month quasi-experimental (convenience sample) longitudinal design control-intervention study. Overweight or obese (BMI ?25?kg/m2) farm men (n?=?43) and women (n?=?29) were recruited with demographic, health behaviors, anthropometric, blood pressure and biochemistry data collected at baseline and at a six months. Salivary cortisol and depression anxiety stress scale results were collected at baseline, three and six months. The intervention group (n?=?37) received a personalized exercise program and regular phone coaching to promote physical activity.Results:The intervention group showed significant reductions in body weight and waist circumference. Results indicated that following the six month exercise program, the intervention group were 2.64???0.65?kg lighter (p?<?0.001), had reduced waist circumference by 2.01???0.86?cm (p?=?0.02) and BMI by 0.97???0.22?kg/m2 (p?<?0.001) relative to the control group.Conclusion:Increasing physical activity altered measures of obesity in farm men and women but did not affect mental health measures or cortisol secretion levels

    Turing learning: : A metric-free approach to inferring behavior and its application to swarms

    Get PDF
    We propose Turing Learning, a novel system identification method for inferring the behavior of natural or artificial systems. Turing Learning simultaneously optimizes two populations of computer programs, one representing models of the behavior of the system under investigation, and the other representing classifiers. By observing the behavior of the system as well as the behaviors produced by the models, two sets of data samples are obtained. The classifiers are rewarded for discriminating between these two sets, that is, for correctly categorizing data samples as either genuine or counterfeit. Conversely, the models are rewarded for 'tricking' the classifiers into categorizing their data samples as genuine. Unlike other methods for system identification, Turing Learning does not require predefined metrics to quantify the difference between the system and its models. We present two case studies with swarms of simulated robots and prove that the underlying behaviors cannot be inferred by a metric-based system identification method. By contrast, Turing Learning infers the behaviors with high accuracy. It also produces a useful by-product - the classifiers - that can be used to detect abnormal behavior in the swarm. Moreover, we show that Turing Learning also successfully infers the behavior of physical robot swarms. The results show that collective behaviors can be directly inferred from motion trajectories of individuals in the swarm, which may have significant implications for the study of animal collectives. Furthermore, Turing Learning could prove useful whenever a behavior is not easily characterizable using metrics, making it suitable for a wide range of applications.Comment: camera-ready versio

    Personalized Drug Dosage – Closing the Loop

    Get PDF
    A brief account is given of various approaches to the individualization of drug dosage, including the use of pharmacodynamic markers, therapeutic monitoring of plasma drug concentrations, genotyping, computer-guided dosage using ‘dashboards’, and automatic closed-loop control of pharmacological action. The potential for linking the real patient to his or her ‘virtual twin’ through the application of physiologically-based pharmacokinetic modeling is also discussed
    corecore