1,735 research outputs found
Towards a realistic in vitro experience of epidural Tuohy needle insertion.
The amount of pressure exerted on the syringe and the depth of needle insertion are the two key factors for successfully carrying out epidural procedure. The force feedback from the syringe plunger is helpful in judging the loss of pressure, and the depth of the needle insertion is crucial in identifying when the needle is precisely placed in the epidural space. This article presents the development of two novel wireless devices to measure these parameters to precisely guide the needle placement in the epidural space. These techniques can be directly used on patients or implemented in a simulator for improving the safety of procedure. A pilot trial has been conducted to collect depth and pressure data with the devices on a porcine cadaver. These measurements are then combined to accurately configure a haptic device for creating a realistic in vitro experience of epidural needle insertion
How dynamic are ice-stream beds?
Projections of sea-level rise contributions from West Antarctica's dynamically thinning ice streams contain high uncertainty because some of the key processes involved are extremely challenging to observe. An especially poorly observed parameter is sub-decadal stability of ice-stream beds, which may be important for subglacial traction, till continuity and landform development. Only two previous studies have made repeated geophysical measurements of ice-stream beds at the same locations in different years, but both studies were limited in spatial extent. Here, we present the results from repeat radar measurements of the bed of Pine Island Glacier, West Antarctica, conducted 3–6 years apart, along a cumulative ∼ 60 km of profiles. Analysis of the correlation of bed picks between repeat surveys shows that 90 % of the bed displays no significant change despite the glacier increasing in speed by up to 40 % over the last decade. We attribute the negligible detection of morphological change at the bed of Pine Island Glacier to the ubiquitous presence of a deforming till layer, wherein sediment transport is in steady state, such that sediment is transported along the basal interface without inducing morphological change to the radar-sounded basal interface. Given the precision of our measurements, the upper limit of subglacial erosion observed here is 500 mm a‾¹, far exceeding erosion rates reported for glacial settings from proglacial sediment yields, but substantially below subglacial erosion rates of 1.0 m a‾¹ previously reported from repeat geophysical surveys in West Antarctica
Desensitization protocol enabling pediatric crossmatch-positive renal transplantation: successful HLA-antibody-incompatible renal transplantation of two highly sensitized children
BACKGROUND: Renal transplantation improves quality of life (QoL) and survival in children requiring renal replacement therapy (RRT). Sensitization with development of a broad-spectrum of anti-HLA antibodies as a result of previous transplantation or after receiving blood products is an increasing problem. There are no published reports of desensitization protocols in children allowing renal transplantation from HLA-antibody-incompatible living donors. METHODS: We adopted our well-established adult desensitization protocol for this purpose and undertook HLA antibody-incompatible living donor renal transplants in two children: a 14-year-old girl and a 13-year-old boy. RESULTS: After 2 and 1.5 years of follow-up, respectively, both patients have stable renal allograft function despite a rise in donor-specific antibodies in one case. CONCLUSIONS: HLA-incompatible transplantation should be considered in selected cases for sensitized children
Magnetism, FeS colloids, and Origins of Life
A number of features of living systems: reversible interactions and weak
bonds underlying motor-dynamics; gel-sol transitions; cellular connected
fractal organization; asymmetry in interactions and organization; quantum
coherent phenomena; to name some, can have a natural accounting via
interactions, which we therefore seek to incorporate by expanding the horizons
of `chemistry-only' approaches to the origins of life. It is suggested that the
magnetic 'face' of the minerals from the inorganic world, recognized to have
played a pivotal role in initiating Life, may throw light on some of these
issues. A magnetic environment in the form of rocks in the Hadean Ocean could
have enabled the accretion and therefore an ordered confinement of
super-paramagnetic colloids within a structured phase. A moderate H-field can
help magnetic nano-particles to not only overcome thermal fluctuations but also
harness them. Such controlled dynamics brings in the possibility of accessing
quantum effects, which together with frustrations in magnetic ordering and
hysteresis (a natural mechanism for a primitive memory) could throw light on
the birth of biological information which, as Abel argues, requires a
combination of order and complexity. This scenario gains strength from
observations of scale-free framboidal forms of the greigite mineral, with a
magnetic basis of assembly. And greigite's metabolic potential plays a key role
in the mound scenario of Russell and coworkers-an expansion of which is
suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed
Krishnaswami Alladi, Springer 201
Recommended from our members
The convective storm initiation project
Copyright @ 2007 AMSThe Convective Storm Initiation Project (CSIP) is an international project to understand precisely where, when, and how convective clouds form and develop into showers in the mainly maritime environment of southern England. A major aim of CSIP is to compare the results of the very high resolution Met Office weather forecasting model with detailed observations of the early stages of convective clouds and to use the newly gained understanding to improve the predictions of the model. A large array of ground-based instruments plus two instrumented aircraft, from the U.K. National Centre for Atmospheric Science (NCAS) and the German Institute for Meteorology and Climate Research (IMK), Karlsruhe, were deployed in southern England, over an area centered on the meteorological radars at Chilbolton, during the summers of 2004 and 2005. In addition to a variety of ground-based remote-sensing instruments, numerous rawin-sondes were released at one- to two-hourly intervals from six closely spaced sites. The Met Office weather radar network and Meteosat satellite imagery were used to provide context for the observations made by the instruments deployed during CSIP. This article presents an overview of the CSIP field campaign and examples from CSIP of the types of convective initiation phenomena that are typical in the United Kingdom. It shows the way in which certain kinds of observational data are able to reveal these phenomena and gives an explanation of how the analyses of data from the field campaign will be used in the development of an improved very high resolution NWP model for operational use.This work is funded by the National Environment Research Council following an initial award from the HEFCE Joint Infrastructure Fund
Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria)
Modern hard corals (Class Hexacorallia; Order Scleractinia) are widely studied because of their fundamental role in reef
building and their superb fossil record extending back to the Triassic. Nevertheless, interpretations of their evolutionary
relationships have been in flux for over a decade. Recent analyses undermine the legitimacy of traditional suborders,
families and genera, and suggest that a non-skeletal sister clade (Order Corallimorpharia) might be imbedded within the
stony corals. However, these studies either sampled a relatively limited array of taxa or assembled trees from heterogeneous
data sets. Here we provide a more comprehensive analysis of Scleractinia (127 species, 75 genera, 17 families) and various
outgroups, based on two mitochondrial genes (cytochrome oxidase I, cytochrome b), with analyses of nuclear genes (ßtubulin,
ribosomal DNA) of a subset of taxa to test unexpected relationships. Eleven of 16 families were found to be
polyphyletic. Strikingly, over one third of all families as conventionally defined contain representatives from the highly
divergent "robust" and "complex" clades. However, the recent suggestion that corallimorpharians are true corals that have
lost their skeletons was not upheld. Relationships were supported not only by mitochondrial and nuclear genes, but also
often by morphological characters which had been ignored or never noted previously. The concordance of molecular
characters and more carefully examined morphological characters suggests a future of greater taxonomic stability, as well as
the potential to trace the evolutionary history of this ecologically important group using fossils
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
The effect of physical activity on psychological distress, cortisol and obesity: results of the farming fit intervention program
Background:Rural and regional Australians have a higher likelihood of mental illness throughout their lifetime than people living in major cities, although the underlying reasons are not yet well defined. Additionally, rural populations experience more lifestyle associated co-morbidities including obesity, diabetes and cardiovascular disease. Research conducted by the National Centre for Farmer Health between 2004 and 2009 revealed a positive correlation between obesity and psychological distress among the farming community. Chronic stress is known to overstimulate the regulation of the hypothalamic-pituitary-adrenal (HPA) axis and cortisol secretion which are associated with abdominal adiposity. Increasing physical activity may normalise cortisol secretion and thereby positively impact both physical and mental health. This paper assesses the effects of increasing physical activity on obesity, health behaviors and mental health in Victorian farming men and women.Methods:Farming Fit was a six month quasi-experimental (convenience sample) longitudinal design control-intervention study. Overweight or obese (BMI ?25?kg/m2) farm men (n?=?43) and women (n?=?29) were recruited with demographic, health behaviors, anthropometric, blood pressure and biochemistry data collected at baseline and at a six months. Salivary cortisol and depression anxiety stress scale results were collected at baseline, three and six months. The intervention group (n?=?37) received a personalized exercise program and regular phone coaching to promote physical activity.Results:The intervention group showed significant reductions in body weight and waist circumference. Results indicated that following the six month exercise program, the intervention group were 2.64???0.65?kg lighter (p?<?0.001), had reduced waist circumference by 2.01???0.86?cm (p?=?0.02) and BMI by 0.97???0.22?kg/m2 (p?<?0.001) relative to the control group.Conclusion:Increasing physical activity altered measures of obesity in farm men and women but did not affect mental health measures or cortisol secretion levels
Turing learning: : A metric-free approach to inferring behavior and its application to swarms
We propose Turing Learning, a novel system identification method for
inferring the behavior of natural or artificial systems. Turing Learning
simultaneously optimizes two populations of computer programs, one representing
models of the behavior of the system under investigation, and the other
representing classifiers. By observing the behavior of the system as well as
the behaviors produced by the models, two sets of data samples are obtained.
The classifiers are rewarded for discriminating between these two sets, that
is, for correctly categorizing data samples as either genuine or counterfeit.
Conversely, the models are rewarded for 'tricking' the classifiers into
categorizing their data samples as genuine. Unlike other methods for system
identification, Turing Learning does not require predefined metrics to quantify
the difference between the system and its models. We present two case studies
with swarms of simulated robots and prove that the underlying behaviors cannot
be inferred by a metric-based system identification method. By contrast, Turing
Learning infers the behaviors with high accuracy. It also produces a useful
by-product - the classifiers - that can be used to detect abnormal behavior in
the swarm. Moreover, we show that Turing Learning also successfully infers the
behavior of physical robot swarms. The results show that collective behaviors
can be directly inferred from motion trajectories of individuals in the swarm,
which may have significant implications for the study of animal collectives.
Furthermore, Turing Learning could prove useful whenever a behavior is not
easily characterizable using metrics, making it suitable for a wide range of
applications.Comment: camera-ready versio
Personalized Drug Dosage – Closing the Loop
A brief account is given of various approaches
to the individualization of drug dosage, including the use of
pharmacodynamic markers, therapeutic monitoring of plasma
drug concentrations, genotyping, computer-guided dosage
using ‘dashboards’, and automatic closed-loop control of
pharmacological action. The potential for linking the real patient
to his or her ‘virtual twin’ through the application of
physiologically-based pharmacokinetic modeling is also
discussed
- …
