85 research outputs found

    Urea based fuel cells and electrocatalysts for urea oxidation

    Get PDF
    Urea is a new member of hydrogen-storage materials for low-temperature fuel cells. It avoids issues of toxicity and safety compared to ammonia and hydrazine. The main limitation of urea fuel cells is the relative low power density due to the sluggish anode reaction. Rapid advances in nano-catalysts for urea electrooxidation have been achieved in order to lower overpotential and improve activity. Urine, as a natural resource of urea, is also an environmental pollutant. Most technologies of treating urine with self-generation electricity are based on microbial fuel cells. However, microbes are only able to utilize the organic substrates rather than urea in urine. Chemical fuel cells in contrast directly oxidize urea to nitrogen gas and removed from urine. Thus urea fuel cells have been used as an alternative method to treat urine. In the paper, the progress in urea based fuel cells and electrocatalysts for urea oxidation is reviewed

    Electrocatalytic urea mineralization in aqueous alkaline medium using NiIIcyclam-modified nanoparticulate TiO2 anodes and its relationship with the simultaneous electrogeneration of H2 on Pt counterelectrodes

    Get PDF
    NiIIcyclam-modified nanoparticulate TiO2-coated ITO electrodes (ITO/TiO2//NiIIcyclam) were prepared by electropolymerization of NiIIcyclam monomers to TiO2-coated ITO electrodes (ITO/TiO2) to improve electrocatalytic urea CO(NH2)2 oxidation in alkaline aqueous solutions. A high value adding secondary effect was the collection of electrons at Pt cathodes, to simultaneously generate H2 from water reduction. NiIIcyclam-modified ITO electrodes (ITO//NiIIcyclam) were also prepared by electropolymerization of NiIIcyclam monomers to bare ITO electrodes (ITO) for comparison purposes. In the presence of the TiO2 nanoparticles, the urea mineralization on NiIIcyclam coatings was doubled (23.95% – organic carbon removal at 120 min of electrolysis) compared to those without TiO2 nanoparticles (13.02% – organic carbon removal at 120 min of electrolysis). In agreement, the faradaic efficiency for H2 generation at the Pt cathode, electrically connected to an anode having TiO2 nanoparticles (0.99 at 120 min of electrolysis), was also twice as effective than that observed when the same Pt cathode was electrically connected to an anode without TiO2 nanoparticles (0.46 at 120 min of electrolysis). The experimental results indicated that the poisoning of NiII centers (which is caused by an excessive production of CO intermediates during the urea oxidation on both NiIIcyclam-modified anodes) was strongly inhibited in the presence of the nanoparticulate TiO2|NiIIcyclam junction. A final comparison between our results and those reported in selected publications revealed that the NiIIcyclam-modified nanoparticulate TiO2-coated ITO anodes here developed, constitutes a promising electrocatalytic system for performing direct urea mineralization at a relative short electrolysis time. Furthermore, the combination of the following phenomena: (a) effective charge separation on the semiconducting ITO|nanoparticulate TiO2 junctions, (b) remarkable capabilities of the nanoporous TiO2 films for tuning the load of OH� anions demanded by the urea oxidation and, (c) outstanding capabilities of the TiO2 nanoparticles for capturing CO intermediates (at Ti3+ donor sites), successfully promoted the enhancement of the electron external transport to Pt cathodes, and consequently improved the faradaic efficiency associated to the cathodic generation of H2

    Redox behaviour of ni-ysz anodes in solid oxide fuel cells

    No full text
    Bibliography: p. 126-128Some pages are in colour

    Electro-Oxidation of Urea on NiOOH Electrode

    Full text link
    Abstract not Available.</jats:p

    Mechanistic Studies during Electro-Oxidation of Urea on Ni-Co Catalyst in Alkaline Medium

    Full text link
    Abstract not Available.</jats:p
    corecore