130 research outputs found

    BAT3 Guides Misfolded Glycoproteins Out of the Endoplasmic Reticulum

    Get PDF
    Secretory and membrane proteins that fail to acquire their native conformation within the lumen of the Endoplasmic Reticulum (ER) are usually targeted for ubiquitin-dependent degradation by the proteasome. How partially folded polypeptides are kept from aggregation once ejected from the ER into the cytosol is not known. We show that BAT3, a cytosolic chaperone, is recruited to the site of dislocation through its interaction with Derlin2. Furthermore, we observe cytoplasmic BAT3 in a complex with a polypeptide that originates in the ER as a glycoprotein, an interaction that depends on the cytosolic disposition of both, visualized even in the absence of proteasomal inhibition. Cells depleted of BAT3 fail to degrade an established dislocation substrate. We thus implicate a cytosolic chaperone as an active participant in the dislocation of ER glycoproteins.United States. National Institutes of HealthBoehringer Ingelheim Fond

    The selective post-translational processing of transcription factor Nrf1 yields distinct isoforms that dictate its ability to differentially regulate gene expression

    Get PDF
    Upon translation, the N-terminal homology box 1 (NHB1) signal anchor sequence of Nrf1 integrates it within the endoplasmic reticulum (ER) whilst its transactivation domains [TADs, including acidic domain 1 (AD1), the flanking Asn/Ser/Thr-rich (NST) domain and AD2] are transiently translocated into the ER lumen, whereupon the NST domain is glycosylated to yield an inactive 120-kDa glycoprotein. Subsequently, these TADs are retrotranslocated into extra-luminal subcellular compartments, where Nrf1 is deglycosylated to yield an active 95-kDa isoform. Herein, we report that AD1 and AD2 are required for the stability of the 120-kDa Nrf1 glycoprotein, but not that of the non-glycosylated/de-glycosylated 95-kDa isoform. Degrons within AD1 do not promote proteolytic degradation of the 120-kDa Nrf1 glycoprotein. However, repositioning of AD2-adjoining degrons (i.e. DSGLS-containing SDS1 and PEST2 sequences) into the cyto/nucleoplasm enables selective topovectorial processing of Nrf1 by the proteasome and/or calpains to generate a cleaved active 85-kDa Nrf1 or a dominant-negative 36-kDa Nrf1γ. Production of Nrf1γ is abolished by removal of SDS1 or PEST2 degrons, whereas production of the cleaved 85-kDa Nrf1 is blocked by deletion of the ER luminal-anchoring NHB2 sequence (aa 81–106). Importantly, Nrf1 activity is positively and/or negatively regulated by distinct doses of proteasome and calpain inhibitors

    RON5 is critical for organization and function of the Toxoplasma moving junction complex

    Get PDF
    Apicomplexans facilitate host cell invasion through formation of a tight-junction interface between parasite and host plasma membranes called the moving junction (MJ). A complex of the rhoptry neck proteins RONs 2/4/5/8 localize to the MJ during invasion where they are believed to provide a stable anchoring point for host penetration. During the initiation of invasion, the preformed MJ RON complex is injected into the host cell where RON2 spans the host plasma membrane while RONs 4/5/8 localize to its cytosolic face. While much attention has been directed toward an AMA1-RON2 interaction supposed to occur outside the cell, little is known about the functions of the MJ RONs positioned inside the host cell. Here we provide a detailed analysis of RON5 to resolve outstanding questions about MJ complex organization, assembly and function during invasion. Using a conditional knockdown approach, we show loss of RON5 results in complete degradation of RON2 and mistargeting of RON4 within the parasite secretory pathway, demonstrating that RON5 plays a key role in organization of the MJ RON complex. While RON8 is unaffected by knockdown of RON5, these parasites are unable to invade new host cells, providing the first genetic demonstration that RON5 plays a critical role in host cell penetration. Although invasion is not required for injection of rhoptry effectors into the host cytosol, parasites lacking RON5 also fail to form evacuoles suggesting an intact MJ complex is a prerequisite for secretion of rhoptry bulb contents. Additionally, while the MJ has been suggested to function in egress, disruption of the MJ complex by RON5 depletion does not impact this process. Finally, functional complementation of our conditional RON5 mutant reveals that while proteolytic separation of RON5 N- and C-terminal fragments is dispensable, a portion of the C-terminal domain is critical for RON2 stability and function in invasion

    A nullimorphic ERLIN2 mutation defines a complicated hereditary spastic paraplegia locus (SPG18)

    Get PDF
    Hereditary Spastic Paraplegia (HSP) is a clinically and genetically heterogeneous group of neurological disorders that are characterized by progressive spasticity of the lower extremities. We describe an extended consanguineous Saudi family in which HSP is linked to SPG18, a previously reported autosomal recessive locus, and show that it is associated with a nullimorphic deletion of ERLIN2, a component of endoplasmic reticulum associated degradation. This finding adds to the growing diversity of cellular functions that are now known to be involved in the maintenance of the corticospinal tract neurons

    Inefficient Quality Control of Thermosensitive Proteins on the Plasma Membrane

    Get PDF
    BACKGROUND: Misfolded proteins are generally recognised by cellular quality control machinery, which typically results in their ubiquitination and degradation. For soluble cytoplasmic proteins, degradation is mediated by the proteasome. Membrane proteins that fail to fold correctly are subject to ER associated degradation (ERAD), which involves their extraction from the membrane and subsequent proteasome-dependent destruction. Proteins with abnormal transmembrane domains can also be recognised in the Golgi or endosomal system and targeted for destruction in the vacuole/lysosome. It is much less clear what happens to membrane proteins that reach their destination, such as the cell surface, and then suffer damage. METHODOLOGY/PRINCIPAL FINDINGS: We have tested the ability of yeast cells to degrade membrane proteins to which temperature-sensitive cytoplasmic alleles of the Ura3 protein or of phage lambda repressor have been fused. In soluble form, these proteins are rapidly degraded upon temperature shift, in part due to the action of the Doa10 and San1 ubiquitin ligases and the proteasome. When tethered to the ER protein Use1, they are also degraded. However, when tethered to a plasma membrane protein such as Sso1 they escape degradation, either in the vacuole or by the proteasome. CONCLUSIONS/SIGNIFICANCE: Membrane proteins with a misfolded cytoplasmic domain appear not to be efficiently recognised and degraded once they have escaped the ER, even though their defective domains are exposed to the cytoplasm and potentially to cytoplasmic quality controls. Membrane tethering may provide a way to reduce degradation of unstable proteins

    Identification of the PDI-Family Member ERp90 as an Interaction Partner of ERFAD

    Get PDF
    In the endoplasmic reticulum (ER), members of the protein disulfide isomerase (PDI) family perform critical functions during protein maturation. Herein, we identify the previously uncharacterized PDI-family member ERp90. In cultured human cells, we find ERp90 to be a soluble ER-luminal glycoprotein that comprises five potential thioredoxin (Trx)-like domains. Mature ERp90 contains 10 cysteine residues, of which at least some form intramolecular disulfides. While none of the Trx domains contain a canonical Cys-Xaa-Xaa-Cys active-site motif, other conserved cysteines could endow the protein with redox activity. Importantly, we show that ERp90 co-immunoprecipitates with ERFAD, a flavoprotein involved in ER-associated degradation (ERAD), through what is most likely a direct interaction. We propose that the function of ERp90 is related to substrate recruitment or delivery to the ERAD retrotranslocation machinery by ERFAD

    Activation of ERAD Pathway by Human Hepatitis B Virus Modulates Viral and Subviral Particle Production

    Get PDF
    Hepatitis B virus (HBV) belongs to the Hepadnaviridae family of enveloped DNA viruses. It was previously shown that HBV can induce endoplasmic reticulum (ER) stress and activate the IRE1-XBP1 pathway of the unfolded protein response (UPR), through the expression of the viral regulatory protein X (HBx). However, it remained obscure whether or not this activation had any functional consequences on the target genes of the UPR pathway. Of these targets, the ER degradation-enhancing, mannosidase-like proteins (EDEMs) are thought to play an important role in relieving the ER stress during UPR, by recognizing terminally misfolded glycoproteins and delivering them to the ER-associated degradation (ERAD). In this study, we investigated the role of EDEMs in the HBV life-cycle. We found that synthesis of EDEMs (EDEM1 and its homologues, EDEM2 and EDEM3) is significantly up-regulated in cells with persistent or transient HBV replication. Co-expression of the wild-type HBV envelope proteins with EDEM1 resulted in their massive degradation, a process reversed by EDEM1 silencing. Surprisingly, the autophagy/lysosomes, rather than the proteasome were involved in disposal of the HBV envelope proteins. Importantly, inhibition of the endogenous EDEM1 expression in HBV replicating cells significantly increased secretion of both, enveloped virus and subviral particles. This is the first report showing that HBV activates the ERAD pathway, which, in turn, reduces the amount of envelope proteins, possibly as a mechanism to control the level of virus particles in infected cells and facilitate the establishment of chronic infections

    Functional characterization of the trans-membrane domain interactions of the Sec61 protein translocation complex beta-subunit

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In eukaryotic cells co- and post-translational protein translocation is mediated by the trimeric Sec61 complex. Currently, the role of the Sec61 complex β-subunit in protein translocation is poorly understood. We have shown previously that in <it>Saccharomyces cerevisiae </it>the trans-membrane domain alone is sufficient for the function of the β-subunit Sbh1p in co-translational protein translocation. In addition, Sbh1p co-purifies not only with the protein translocation channel subunits Sec61p and Sss1p, but also with the reticulon family protein Rtn1p.</p> <p>Results</p> <p>We used random mutagenesis to generate novel Sbh1p mutants in order to functionally map the Sbh1p trans-membrane domain. These mutants were analyzed for their interactions with Sec61p and how they support co-translational protein translocation. The distribution of mutations identifies one side of the Sbh1p trans-membrane domain α-helix that is involved in interactions with Sec61p and that is important for Sbh1p function in protein translocation. At the same time, these mutations do not affect Sbh1p interaction with Rtn1p. Furthermore we show that Sbh1p is found in protein complexes containing not only Rtn1p, but also the two other reticulon-like proteins Rtn2p and Yop1p.</p> <p>Conclusion</p> <p>Our results identify functionally important amino acids in the Sbh1p trans-membrane domain. In addition, our results provide additional support for the involvement of Sec61β in processes unlinked to protein translocation.</p

    Protein C Mutation (A267T) Results in ER Retention and Unfolded Protein Response Activation

    Get PDF
    BACKGROUND: Protein C (PC) deficiency is associated with a high risk of venous thrombosis. Recently, we identified the PC-A267T mutation in a patient with PC deficiency and revealed by in vitro studies decreased intracellular and secreted levels of the mutant. The aim of the present study was to characterize the underlying mechanism(s). METHODOLOGY/PRINCIPAL FINDINGS: CHO-K1 cells stably expressing the wild-type (PC-wt) or the PC mutant were generated. In order to examine whether the PC mutant was subjected to increased intracellular degradation, the cells were treated with several inhibitors of various degradation pathways and pulse-chase experiments were performed. Protein-chaperone complexes were analyzed by treating the cells with a cross-linker followed by Western blotting (WB). Expression levels of the immunoglobulin-binding protein (BiP) and the phosphorylated eukaryotic initiation factor 2α (P-eIF2α), both common ER stress markers, were determined by WB to examine if the mutation induced ER stress and unfolded protein response (UPR) activation. We found no major differences in the intracellular degradation between the PC variants. The PC mutant was retained in the endoplasmic reticulum (ER) and had increased association with the Grp-94 and calreticulin chaperones. Retention of the PC-A267T in ER resulted in UPR activation demonstrated by increased expression levels of the ER stress markers BiP and P-eIF2α and caused also increased apoptotic activity in CHO-K1 cells as evidenced by elevated levels of DNA fragmentation. CONCLUSIONS/SIGNIFICANCE: The reduced intracellular level and impaired secretion of the PC mutant were due to retention in ER. In contrast to other PC mutations, retention of the PC-A267T in ER resulted in minor increased proteasomal degradation, rather it induced ER stress, UPR activation and apoptosis

    Ubiquitin-Specific Protease 25 Functions in Endoplasmic Reticulum-Associated Degradation

    Get PDF
    Endoplasmic Reticulum (ER)-associated degradation (ERAD) discards abnormal proteins synthesized in the ER. Through coordinated actions of ERAD components, misfolded/anomalous proteins are recognized, ubiquitinated, extracted from the ER and ultimately delivered to the proteasome for degradation. It is not well understood how ubiquitination of ERAD substrates is regulated. Here, we present evidence that the deubiquitinating enzyme Ubiquitin-Specific Protease 25 (USP25) is involved in ERAD. Our data support a model where USP25 counteracts ubiquitination of ERAD substrates by the ubiquitin ligase HRD1, rescuing them from degradation by the proteasome
    corecore