9,232 research outputs found
Load-depth sensing of isotropic, linear viscoelastic materials using rigid axisymmetric indenters
An indentation experiment involves five variables: indenter shape, material
behavior of the substrate, contact size, applied load and indentation depth.
Only three variable are known afterwards, namely, indenter shape, plus load and
depth as function of time. As the contact size is not measured and the
determination of the material properties is the very aim of the test; two
equations are needed to obtain a mathematically solvable system.
For elastic materials, the contact size can always be eliminated once and for
all in favor of the depth; a single relation between load, depth and material
properties remains with the latter variable as unknown.
For viscoelastic materials where hereditary integrals model the constitutive
behavior, the relation between depth and contact size usually depends also on
the (time-dependent) properties of the material. Solving the inverse problem,
i.e., determining the material properties from the experimental data, therefore
needs both equations. Extending Sneddon's analysis of the indentation problem
for elastic materials to include viscoelastic materials, the two equations
mentioned above are derived. To find the time dependence of the material
properties the feasibility of Golden and Graham's method of decomposing
hereditary integrals (J.M. Golden and G.A.C. Graham. Boundary value problems in
linear viscoelasticity, Springer, 1988) is investigated and applied to a single
load-unload process and to sinusoidally driven stationary state indentation
processes.Comment: 116 pages, 29 figure
Three flow regimes of viscous jet falling onto a moving surface
A stationary viscous jet falling from an oriented nozzle onto a moving
surface is studied, both theoretically and experimentally. We distinguish three
flow regimes and classify them by the convexity of the jet shape (concave,
vertical and convex). The fluid is modeled as a Newtonian fluid, and the model
for the flow includes viscous effects, inertia and gravity. By studying the
characteristics of the conservation of momentum for a dynamic jet, the boundary
conditions for each flow regime are derived, and the flow regimes are
characterized in terms of the process and material parameters. The model is
solved by a transformation into an algebraic equation. We make a comparison
between the model and experiments, and obtain qualitative agreement
Formation and evolution of dwarf early-type galaxies in the Virgo cluster II. Kinematic Scaling Relations
We place our sample of 18 Virgo dwarf early-type galaxies (dEs) on the V-K -
velocity dispersion, Faber-Jackson, and Fundamental Plane (FP) scaling
relations for massive early-type galaxies (Es). We use a generalized velocity
dispersion, which includes rotation, to be able to compare the location of both
rotationally and pressure supported dEs with those of early and late-type
galaxies. We find that dEs seem to bend the Faber-Jackson relation of Es to
lower velocity dispersions, being the link between Es and dwarf spheroidal
galaxies (dSphs). Regarding the FP relation, we find that dEs are significantly
offset with respect to massive hot stellar systems, and re-casting the FP into
the so-called kappa-space suggests that this offset is related to dEs having a
total mass-to-light ratio higher than Es but still significantly lower than
dSph galaxies. Given a stellar mass-to-light ratio based on the measured line
indices of dEs, the FP offset allows us to infer that the dark matter fraction
within the half light radii of dEs is on average >~ 42% (uncertainties of 17%
in the K band and 20% in the V band), fully consistent with an independent
estimate in an earlier paper in this series. We also find that dEs in the
size-luminosity relation in the near-infrared, like in the optical, are offset
from early-type galaxies, but seem to be consistent with late-type galaxies. We
thus conclude that the scaling relations show that dEs are different from Es,
and that they further strengthen our previous findings that dEs are closer to
and likely formed from late-type galaxies.Comment: 14 pages, 9 figures, 2 appendixes. Accepted for publication in A&
Optimal Tradeoff Between Exposed and Hidden Nodes in Large Wireless Networks
Wireless networks equipped with the CSMA protocol are subject to collisions
due to interference. For a given interference range we investigate the tradeoff
between collisions (hidden nodes) and unused capacity (exposed nodes). We show
that the sensing range that maximizes throughput critically depends on the
activation rate of nodes. For infinite line networks, we prove the existence of
a threshold: When the activation rate is below this threshold the optimal
sensing range is small (to maximize spatial reuse). When the activation rate is
above the threshold the optimal sensing range is just large enough to preclude
all collisions. Simulations suggest that this threshold policy extends to more
complex linear and non-linear topologies
Calculations of the thermodynamic and kinetic properties of LiV3O8
The phase behavior and kinetic pathways of Li1+xV3O8 are investigated by
means of density functional theory (DFT) and a cluster expansion (CE)
methodology that approximates the system Hamiltonian in order to identify the
lowest energy configurations. Although DFT calculations predict the correct
ground state for a given composition, both GGA and LDA fail to obtain phase
stability consistent with experiment due to strongly localized vanadium 3d
electrons. A DFT+U methodology recovers the correct phase stability for an
optimized U value of 3.0eV. GGA+U calculations with this value of U predict
electronic structures that qualitatively agree with experiment. The resulting
calculations indicate solid solution behavior from LiV3O8 to Li2.5V3O8 and
two-phase coexistence between Li2.5V3O8 and Li4V3O8. Analysis of the lithiation
sequence from LiV3O8 to Li2.5V3O8 reveals the mechanism by which lithium
intercalation proceeds in this material. Calculations of lithium migration
energies for different lithium concentrations and configurations provides
insight into the relevant diffusion pathways and their relationship to
structural properties
Assessment of Airframe Noise Reduction Technologies Based on EPNL from Flight Tests
The acoustic performance of various airframe noise reduction technologies Adaptive Compliant Trailing Edge flap, main landing gear fairings, and gear cavity treatments was determined, individually and in combination, using the Effective Perceived Noise Level metric. These noise measurements and calculations closely follow the Federal Aviation Administration aircraft noise certification standards, specifically for the approach noise measurement point. The flyover data correspond to pole-mounted, single-microphone measurements obtained during a series of flight tests, conducted under the NASA Flight Demonstrations and Capabilities project, that evaluated flap and landing gear noise reduction technologies. To minimize contributions from the propulsion system, the aircraft was flown along the approach path with engine thrust set at ground idle. Although contamination from engine, background, and secondary airframe noise sources partially masked the true performance of the tested technologies, the resulting acoustic data clearly showed substantial noise reductions relative to baseline levels. The acoustic benefits measured by the single microphones are consistent with previously reported trends in acoustic levels obtained from phased microphone array data
- …
