19 research outputs found
Evidence for orbital deformation that may contribute to monocular blindness following minor frontal head trauma
Effects of germination season on life history traits and on transgenerational plasticity in seed dormancy in a cold desert annual
The maternal environment can influence the intensity of seed dormancy and thus seasonal germination timing and post-germination life history traits. We tested the hypotheses that germination season influences phenotypic expression of post-germination life history traits in the cold desert annual Isatis violascens and that plants from autumn- and spring-germinating seeds produce different proportions of seeds with nondeep and intermediate physiological dormancy (PD). Seeds were sown in summer and flexibility in various life history traits determined for plants that germinated in autumn and in spring. A higher percentage of spring- than of autumn-germinating plants survived the seedling stage, and all surviving plants reproduced. Number of silicles increased with plant size (autumn- > spring-germinating plants), whereas percent dry mass allocated to reproduction was higher in spring- than in autumn-germinating plants. Autumn-germinating plants produced proportionally more seeds with intermediate PD than spring-germinating plants, while spring-germinating plants produced proportionally more seeds with nondeep PD than autumn-germinating plants. Flexibility throughout the life history and transgenerational plasticity in seed dormancy are adaptations of I. violascens to its desert habitat. Our study is the first to demonstrate that autumn- and spring-germinating plants in a species population differ in proportion of seeds produced with different levels of PD
Elemental Bioimaging by Means of Fast Scanning Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry
The effect of growth conditions on the seed size/number trade-off
Background
If the amount of resources allocated to reproduction (K) is fixed, then an increase in seed mass (S) can only be achieved by a decrease in seed number (n = K/S). Thus, log(n) = log(K)−log(S) producing a slope of −1 when seed mass and number are plotted on log-log axes. However, in comparative studies, empirical support for a slope of −1 is limited and contentious, leading some to question the utility of this concept.
Methodology/Principal Findings
First, we show that the expected slope depends on whether genotypes and species producing seeds of different mass are expected to reach the same adult size and that this in turn depends partly on the nature of growth. Second, we present experimental results using a population of recombinant inbred lines (RILs) of Arabidopsis thaliana. When these RILs are grown in large pots with plentiful nutrients, they exhibit a trade-off between seed size and number with a slope of −1.68 (±0.18) on log-log axes. This occurs because of genetic correlations between seed mass and adult size so that, under the right growth conditions, lines producing lighter seeds have the genetic potential to produce larger rosettes and hence a greater total mass of seeds. We re-grew lines in small pots (10 and 40 mm diameter) in a nutrient-poor substrate so that final adult size was heavily restricted by pot size.
Conclusions/Significance
Under our growth conditions, small-seeded lines were unable to produce a greater total mass of seeds. Hence a trade-off emerged between seed mass and seed number with a slope of −1.166±0.319 on log-log axes in 40-mm diameter pots (close to the expected value of −1), although the slope was 0.132±0.263 in 10-mm diameter pots, demonstrating that the nature of the trade-off is sensitive to the growth conditions
