3,073 research outputs found
A tiny new species of Platypelis from the Marojejy National Park in northeastern Madagascar (Amphibia: Microhylidae)
We describe a tiny new frog species of the genus Platypelis (Anura: Microhylidae: Cophylinae) from Marojejy National Park, northeastern Madagascar. Platypelis ravus sp. nov. differs from all other known Platypelis and Cophyla species by its small size (17-19 mm snout-vent length) and a combination of other morphological and bioacoustic characters. The new species seems to be most closely related to P. milloti with which it shares the principal colour pattern, but exhibits a yellow rather than red posterior venter. Uncorrected pairwise sequence divergence in a 16S rRNA gene fragment to all other known species of the genus (except P. cowanii for which no genetic data is available) is greater than 6%. We suggest the inclusion of the new species in the IUCN threat category “Data Deficient”
Approximation of a stochastic wave equation in dimension three, with application to a support theorem in H\"{o}lder norm
A characterization of the support in H\"{o}lder norm of the law of the
solution to a stochastic wave equation with three-dimensional space variable is
proved. The result is a consequence of an approximation theorem, in the
convergence of probability, for a sequence of evolution equations driven by a
family of regularizations of the driving noise.Comment: Published in at http://dx.doi.org/10.3150/13-BEJ554 the Bernoulli
(http://isi.cbs.nl/bernoulli/) by the International Statistical
Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
A spectral-based numerical method for Kolmogorov equations in Hilbert spaces
We propose a numerical solution for the solution of the
Fokker-Planck-Kolmogorov (FPK) equations associated with stochastic partial
differential equations in Hilbert spaces.
The method is based on the spectral decomposition of the Ornstein-Uhlenbeck
semigroup associated to the Kolmogorov equation. This allows us to write the
solution of the Kolmogorov equation as a deterministic version of the
Wiener-Chaos Expansion. By using this expansion we reformulate the Kolmogorov
equation as a infinite system of ordinary differential equations, and by
truncation it we set a linear finite system of differential equations. The
solution of such system allow us to build an approximation to the solution of
the Kolmogorov equations. We test the numerical method with the Kolmogorov
equations associated with a stochastic diffusion equation, a Fisher-KPP
stochastic equation and a stochastic Burgers Eq. in dimension 1.Comment: 28 pages, 10 figure
LA INVESTIGACIÓN DE LOS ESTUDIANTES DE LA LICENCIATURA EN CIENCIAS POLÍTICAS Y ADMINISTRACIÓN PÚBLICA A PARTIR DEL PLAN DE ESTUDIOS FLEXIBLE 2004
La presente investigación es de tipo exploratoria con intenciones explicativas, nace con el propósito de conocer el estado actual de la producción científica (tesis, tesinas, ensayos, memorias y artículos especializados) de la Licenciatura en Ciencias Políticas y Administración Pública (Lic., en CPyAP) de la Facultad de Ciencias
Políticas y Sociales (FCPyS) de la Universidad Autónoma de Estado de México (UAEMéx) a partir de la implementación del Modelo Institucional de Innovación Curricular de 2004 que desembocó en el diseño de un plan de estudios comúnmente
llamado >, intentado explicar por qué se presenta de tal forma
- …
