23 research outputs found
Studies on high power ultrasonic microembossing and organic light emitting diodes (OLEDs) for the creation of lab-on-CD devices for sensor related applications
This study demonstrates the application of High Power Ultrasonic Microembossing Technology (HPUMT) in producing microfeatures on polymer substrates. The work reviews a novel method of obtaining flash free and precise microfeatures by manipulating the material density through microcellular foaming. The microfeatures created on the polymer substrates were further characterized by analyzing the feature depth with respect to the critical ultrasonic embossing operating parameters such as embossing heating times (s), embossing amplitude (ym) at a constant embossing trigger force (N). An experiment design was constructed and performed to characterize the parameters on foamed and unfoamed (or regular) versions of polystyrene (PS) and polypropylene (PP) sample materials. Results indicated feature depth was proportional to heating times, amplitude and force. It was also seen the maximum depth was achieved in the shortest cycle times with higher amplitudes and forces of operation.
HPUMT was further studied to create functional network of microchannels functioned as reservoirs, reaction chamber and burst or gate valves to form a centrifugal biosensing platform that is also referred to as a lab-on-CD or a bio-CD device. The surface energy of the polymer substrates was increased to enable fluid flow by using a surfactant based organic coating to facilitate hydrophilicity. Using an organic light emitting diode (OLEDs) as an electroluminescence source provided luminescence decay results in good agreement with stern-volmer relationship. The functionality of the OLED-coupled lab-on-CD device was further tested in measuring unknown concentrations of a particular analyte in corn slurry sample which contained numerous contaminants. Combinatorial multianalyte sensing was also made possible on a single bio-CD using a four photodetector (PD) quad preamp disk sensor
Studies on high power ultrasonic microembossing and organic light emitting diodes (OLEDs) for the creation of lab-on-CD devices for sensor related applications
This study demonstrates the application of High Power Ultrasonic Microembossing Technology (HPUMT) in producing microfeatures on polymer substrates. The work reviews a novel method of obtaining flash free and precise microfeatures by manipulating the material density through microcellular foaming. The microfeatures created on the polymer substrates were further characterized by analyzing the feature depth with respect to the critical ultrasonic embossing operating parameters such as embossing heating times (s), embossing amplitude (ym) at a constant embossing trigger force (N). An experiment design was constructed and performed to characterize the parameters on foamed and unfoamed (or regular) versions of polystyrene (PS) and polypropylene (PP) sample materials. Results indicated feature depth was proportional to heating times, amplitude and force. It was also seen the maximum depth was achieved in the shortest cycle times with higher amplitudes and forces of operation.
HPUMT was further studied to create functional network of microchannels functioned as reservoirs, reaction chamber and burst or gate valves to form a centrifugal biosensing platform that is also referred to as a lab-on-CD or a bio-CD device. The surface energy of the polymer substrates was increased to enable fluid flow by using a surfactant based organic coating to facilitate hydrophilicity. Using an organic light emitting diode (OLEDs) as an electroluminescence source provided luminescence decay results in good agreement with stern-volmer relationship. The functionality of the OLED-coupled lab-on-CD device was further tested in measuring unknown concentrations of a particular analyte in corn slurry sample which contained numerous contaminants. Combinatorial multianalyte sensing was also made possible on a single bio-CD using a four photodetector (PD) quad preamp disk sensor.</p
Zero flash ultrasonic micro embossing on foamed polymer substrates: A proof of concept
Integration of Organic Light Emitting Diodes and Organic Photodetectors for Lab-on-a-Chip Bio-Detection Systems
The rapid development of microfluidics and lab-on-a-chip (LoC) technologies have allowed for the efficient separation and manipulation of various biomaterials, including many diagnostically relevant species. Organic electronics have similarly enjoyed a great deal of research, resulting in tiny, highly efficient, wavelength-selective organic light-emitting diodes (OLEDs) and organic photodetectors (OPDs). We consider the blend of these technologies for rapid detection and diagnosis of biological species. In the ideal system, optically active or fluorescently labelled biological species can be probed via light emission from OLEDs, and their subsequent light emission can be detected with OPDs. The relatively low cost and simple fabrication of the organic electronic devices suggests the possibility of disposable test arrays. Further, with full integration, the finalized system can be miniaturized and made simple to use. In this review, we consider the design constraints of OLEDs and OPDs required to achieve fully organic electronic optical bio-detection systems. Current approaches to integrated LoC optical sensing are first discussed. Fully realized OLED- and OPD-specific photoluminescence detection systems from literature are then examined, with a specific focus on their ultimate limits of detection. The review highlights the enormous potential in OLEDs and OPDs for integrated optical sensing, and notes the key avenues of research for cheap and powerful LoC bio-detection systems
