334 research outputs found

    Regenerative medicine in lung diseases: A systematic review

    Get PDF
    Regenerative medicine has opened the door to the exploration of new therapeutic methods for the treatment of various diseases, especially those associated with local or general disregulation of the immune system. In pulmonary diseases, new therapeutic strategies have emerged that are aimed at restoring functional lung tissue rather than alleviating symptoms. These strategies focus on tissue regeneration using stem cells and/or their derivatives or replacement of dysfunctional tissue using biomedical engineering. Animal health can directly benefit from regenerative therapy strategies and also serve as a translational experimental model for human disease. Several clinical trials have been conducted to evaluate the effects of cellular treatment on inflammatory lung disease in animals. Data reported to date show several beneficial effects in ex vivo and in vivo models; however, our understanding of the mechanisms that regenerative therapies exert on diseased tissues remains incomplete

    Antibiotic resistance in the environment, with particular reference to MRSA

    Get PDF
    The introduction of β-lactam antibiotics (penicillins and cephalosporins) in the 1940s and 1950s probably represents the most dramatic event in the battle against infection in human medicine. Even before widespread global use of penicillin, resistance was already recorded. E. coli producing a penicillinase was reported in Nature in 1940 (Abraham, 1940) and soon after a similar penicillinase was discovered in Staphylococcus aureus (Kirby, 1944). The appearance of these genes, so quickly after the discovery and before the widespread introduction of penicillin, clearly shows that the resistance genes pre-dated clinical use of the antibiotic itself

    PLD growth of strontium titanate thin films on SrO-deoxidized and rGO-buffered Si(001) substrate

    Get PDF
    Epitaxy represents a process of crystal growth or material deposition in which the new created layers have a high degree of crystallographic alignment with the substrate lattice. In this research 10 nm-thick thin films of strontium titanate (STO) were grown using pulsed laser deposition (PLD) method on Si(001) whose surface was either deoxidized with strontium oxide (SrO) or buffered by reduced graphene oxide (rGO) in combination with SrO deoxidation. In addition to differently prepared Si(001) surface, the effect of deposition temperature on the crystalline structure of the STO thin films was also examined. Reflection high energy electron diffraction (RHEED), atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray reflectivity (XRR) and X-ray photoelectron spectroscopy (XPS) methods were used to examine the properties of the grown films. It was concluded that the STO thin film grown on the rGO-coated Si substrate at 515 °C shows the highest crystallinity with a smooth surface, while the film deposited on the bare silicon has amorphous structure. The STO films grown at 700 °C show textured or polycrystalline structure. Good crystallinity, epitaxial alignment, and clean interface are the major requirements for STO/Si and the STO/rGO/Si heterostructure for making an efficient and stable Si photocathode for the photoelectrochemical (PEC) water splitting. Our future work will be directed toward understanding how the obtained interfaces and crystalline structure of STO films are influencing the PEC process.Twenty-First Young Researchers’ Conference - Materials Science and Engineering: Program and the Book of Abstracts; November 29 – December 1, 2023, Belgrade, Serbi

    PLD growth of strontium titanate thin films on silicon substrate for photoelectrochemical water-splitting

    Get PDF
    Epitaxial films of metal oxides deposited on silicon substrates represent a new type of material that could be used as protective (or electroactive) layer in the photoelectrochemical water splitting. To understand the influence of crystalline and interfacial properties of oxide layer on the water splitting process a ~10 nm strontium titanate (STO) films have been grown using the PLD method on bare and reduced graphene oxide (rGO) buffered silicon substrate. Our approach relied on the oxide-silicon integration using combination of SrO-assisted deoxidation and controllable coverage of silicon surface with a mono- to threelayer of spin-coated GO. The STO films have been grown at 515 and 700 °C and various experimental techniques were used to examine the surface and crystalline properties of grown films (reflection high energy electron diffraction, atomic force microscopy, scanning electron microscopy, X-ray diffraction, X-ray reflectivity and X-ray photoelectron spectroscopy). The results show that the best the crystallinity of the STO thin films was obtained on rGO/SrO deoxidized silicon surface at 515 °C. Future studies will be devoted to electrochemical characterization of the grown films, that will help to establish clearer link on how the interface and crystalline parameters affect the water splitting process.Workshop “Application-oriented material development”; September 12-14, Bucharest, 2023.Contribution: Poste

    EFSA BIOHAZ Panel (EFSA Panel on Biologicial Hazards), 2013. Scientific Opinion on the public health hazards to be covered by inspection of meat (solipeds)

    Get PDF
    A risk ranking process identified Trichinella spp. as the most relevant biological hazard in the context of meat inspection of domestic solipeds. Without a full and reliable soliped traceability system, it is considered that either testing all slaughtered solipeds for Trichinella spp., or inactivation meat treatments (heat or irradiation) should be used to maintain the current level of safety. With regard to general aspects of current meat inspection practices, the use of manual techniques during current post-mortem soliped meat inspection may increase microbial cross-contamination, and is considered to have a detrimental effect on the microbiological status of soliped carcass meat. Therefore, the use of visual-only inspection is suggested for “non-suspect” solipeds. For chemical hazards, phenylbutazone and cadmium were ranked as being of high potential concern. Monitoring programmes for chemical hazards should be more flexible and based on the risk of occurrence, taking into account Food Chain Information (FCI), covering the specific on-farm environmental conditions and individual animal treatments, and the ranking of chemical substances, which should be regularly updated and include new hazards. Sampling, testing and intervention protocols for chemical hazards should be better integrated and should focus particularly on cadmium, phenylbutazone and priority “essential substances” approved for treatment of equine animals. Implementation and enforcement of a more robust and reliable identification system throughout the European Union is needed to improve traceability of domestic solipeds. Meat inspection is recognised as a valuable tool for surveillance and monitoring of animal health and welfare conditions. If visual only post-mortem inspection is implemented for routine slaughter, a reduction in the detection of strangles and mild cases of rhodococcosis would occur. However, this was considered unlikely to affect the overall surveillance of both diseases. Improvement of FCI and traceability were considered as not having a negative effect on animal health and welfare surveillance
    corecore