512 research outputs found
Neural processing of emotions in traumatized children treated with eye movement desensitization and reprocessing therapy: a hdEEG study
Eye Movement Desensitization and Reprocessing (EMDR) therapy has been proven efficacious in restoring affective regulation in Post-Traumatic Stress Disorder (PTSD) patients. However, its effectiveness on emotion processing in children with complex trauma has yet to be explored. High density Electroencephalography (hdEEG) was used to investigate the effects of EMDR on brain responses to adults\u27 emotions on children with histories of early maltreatment. Ten school-aged children were examined before (T0) and within one month after the conclusion of EMDR (T1). hdEEGs were recorded while children passively viewed angry, afraid, happy, and neutral faces. Clinical scales were administered at the same time. Correlation analyses were performed to detect brain regions whose activity was linked to children\u27s traumatic symptom-related and emotional-adaptive problem scores. In all four conditions, hdEEG showed similar significantly higher activity on the right medial prefrontal and fronto-temporal limbic regions at T0, shifting towards the left medial and superior temporal regions at T1. Moreover, significant correlations were found between clinical scales and the same regions whose activity significantly differed between pre- and post-treatment. These preliminary results demonstrate that, after EMDR, children suffering from complex trauma show increased activity in areas implicated in high-order cognitive processing when passively viewing pictures of emotional expressions. These changes are associated with the decrease of depressive and traumatic symptoms, and with the improvement of emotional-adaptive functioning over time
Infarct-like myocarditis with coronary vasculitis and aneurysm formation caused by epstein–barr virus infection
Myocardial infection by Epstein–Barr virus (EBV) may manifest with inflammatory cardiomyopathy, coronary syndrome X, and rarely with infarct-like myocarditis. The aim of the report is to describe a case of myocardial EBV infection causing acute myocarditis with heart failure, necrotizing coronary vasculitis, and multiple left ventricular (LV) aneurysms. A 67-year-old woman presented with fever, chest pain, and heart failure. She underwent non-invasive cardiac studies including electrocardiography, 2D-echocardiography, cardiac magnetic resonance, hematochemical exams with Troponin T determination, and invasive studies including cardiac catheterization, coronary angiography, and LV endomyocardial biopsy. Five endomyocardial samples were processed for histology and immunohistochemistry for inflammatory cells characterization and detection of viral antigens. Two additional frozen samples were evaluated by real-time polymerase chain reaction for the presence of cardiotropic viral genomes. Routine laboratory tests revealed the presence of elevated white blood cells (17 000 103/μL) and increased Troponin T. Electrocardiogram showed sinus tachycardia with ST elevation in V2–V5. Two-dimensional echocardiography showed normal LV dimension with reduced LV contractility (LVEF = 40%) with mild pericardial effusion. Cardiac magnetic resonance revealed the presence of a micro-aneurism in the inferior LV wall, a diffuse oedematous imbibition of LV myocardium suggested by hyper-intensity of T2 mapping, and increased fibrosis as suggested by areas of late gadolinium enhancement signals. Coronary arteries were normal while several micro-aneurysms were observed at LV angiography. At histology, a lymphocytic myocarditis with necrotizing coronary vasculitis sustained by a positive real-time polymerase chain reaction for EBV, detectable in cardiomyocytes and inflamed intramural vessels by positive immunohistochemistry for EBV latent membrane protein 1 antigen, was observed. Myocardial EBV infection is an unusual cause of acute heart failure and cardiac aneurysms, increasing the risk of electrical instability, cardiac perforation, and sudden death
GFAP-Driven GFP Expression in Activated Mouse Muller Glial Cells Aligning Retinal Blood Vessels Following Intravitreal Injection of AAV2/6 Vectors
Background: Muller cell gliosis occurs in various retinal pathologies regardless of the underlying cellular defect. Because activated Muller glial cells span the entire retina and align areas of injury, they are ideal targets for therapeutic strategies, including gene therapy.Methodology/Principal Findings: We used adeno-associated viral AAV2/6 vectors to transduce mouse retinas. The transduction pattern of AAV2/6 was investigated by studying expression of the green fluorescent protein (GFP) transgene using scanning-laser ophthalmoscopy and immuno-histochemistry. AAV2/6 vectors transduced mouse Muller glial cells aligning the retinal blood vessels. However, the transduction capacity was hindered by the inner limiting membrane (ILM) and besides Muller glial cells, several other inner retinal cell types were transduced. To obtain Muller glial cell-specific transgene expression, the cytomegalovirus (CMV) promoter was replaced by the glial fibrillary acidic protein (GFAP) promoter. Specificity and activation of the GFAP promoter was tested in a mouse model for retinal gliosis. Mice deficient for Crumbs homologue 1 (CRB1) develop gliosis after light exposure. Light exposure of Crb1(-/-) retinas transduced with AAV2/6-GFAP-GFP induced GFP expression restricted to activated Muller glial cells aligning retinal blood vessels.Conclusions/Significance: Our experiments indicate that AAV2 vectors carrying the GFAP promoter are a promising tool for specific expression of transgenes in activated glial cells
Nutritional and functional advantages of the use of fermented black chickpea flour for semolina-pasta fortification
Pasta represents a dominant portion of the diet worldwide and its functionalization with high nutritional value ingredients, such as legumes, is the most ideal solution to shape consumers behavior towards healthier food choices. Aiming at improving the nutritional quality of semolina pasta, semi-liquid dough of a Mediterranean black chickpea flour, fermented with Lactiplantibacillus plantarum T0A10, was used at a substitution level of 15% to manufacture fortified pasta. Fermentation with the selected starter enabled the release of 20% of bound phenolic compounds, and the conversion of free compounds into more active forms (dihydrocaffeic and phloretic acid) in the dough. Fermented dough also had higher resistant starch (up to 60% compared to the control) and total free amino acids (almost 3 g/kg) contents, whereas antinutritional factors (raffinose, condensed tannins, trypsin inhibitors and saponins) significantly decreased. The impact of black chickpea addition on pasta nutritional, technological and sensory features, was also assessed. Compared to traditional (semolina) pasta, fortified pasta had lower starch hydrolysis rate (ca. 18%) and higher in vitro protein digestibility (up to 38%). Moreover, fortified cooked pasta, showing scavenging activity against DPPH and ABTS radicals and intense inhibition of linoleic acid peroxidation, was appreciated for its peculiar organoleptic profile. Therefore, fermentation technology appears to be a promising tool to enhance the quality of pasta and promote the use of local chickpea cultivars while preventing their genetic erosion
Impact of blanching and high hydrostatic pressure combined treatments on the physico-chemical and microbiological properties and bioactive-compound profile of an industrial strawberry smoothie
Enhancing the shelf life of fruit and vegetable products is an important research field in the food industry. Smoothies are an alternative to filtered juices and highly processed beverages. High-pressure processing (HPP) has recently gained increasing attention as a non-thermal technology to reduce microbiological load while preserving juice quality-related properties. Herein, the combination of blanching and HPP to treat strawberry smoothies at industrial scale was compared with conventional thermally pasteurized (TP) and untreated (NT) smoothies. Analysis focused on physicochemical (pH, ◦Brix, colour, and viscosity) and microbiological properties, and bioactive compound contents. Additionally, phenolic compounds were analysed by HPLC-ESI-TOF-MS, vitamin C content was analysed by HPLC-UV-Vis, and antioxidant activity was determined by DPPH and ABTS assays. HPP samples treated at 600 MPa for 3 min at 4 ◦C showed increased viscosity and a significant increase in phenolic compounds (particularly p-coumaroyl hexose) related to TP and untreated samples (26.8 and 17.6%,
respectively) and maintained colour stability compared to untreated samples. Anthocyanidins retention was better in HPP- than in TP- treated samples. Vitamin C content increased significantly by 15% in HPP-treated samples, contributing to enhanced antioxidant potential (12%), as shown by the minimal microbiological load observed, in comparison with untreated samples. These findings suggest that HPP is an effective alternative to TP for improving the overall quality of strawberry smoothies
Microphytobenthos of Arctic Kongsfjorden (Svalbard, Norway): biomass and potential primary production along the shore line
During summer 2007, Arctic microphytobenthic potential primary production was measured at several stations around the coastline of Kongsfjorden (Svalbard, Norway) at ?5 m water depth and at two stations at five different water depths (5, 10, 15, 20, 30 m). Oxygen planar optode sensor spots were used ex situ to determine oxygen exchange in the overlying water of intact sediment cores under controlled light (ca. 100 ?mol photons m?2 s?1) and temperature (2–4°C) conditions. Patches of microalgae (mainly diatoms) covering sandy sediments at water depths down to 30 m showed high biomass of up to 317 mg chl a m?2. In spite of increasing water depth, no significant trend in “photoautotrophic active biomass” (chl a, ratio living/dead cells, cell sizes) and, thus, in primary production was measured at both stations. All sites from ?5 to 30 m water depth exhibited variable rates of net production from ?19 to +40 mg O2 m?2 h?1 (?168 to +360 mg C m?2 day?1) and gross production of about 2–62 mg O2 m?2 h?1 (17–554 mg C m?2 day?1), which is comparable to other polar as well as temperate regions. No relation between photoautotrophic biomass and gross/net production values was found. Microphytobenthos demonstrated significant rates of primary production that is comparable to pelagic production of Kongsfjorden and, hence, emphasised the importance as C source for the zoobenthos
Phenolic content and potential bioactivity of apple juice as affected by thermal and ultrasound pasteurization
Thermal (T) and ultrasound (US) pasteurization processes were applied to apple juice and the phenolic compounds (TPC) were quantified before and after in vitro digestion by HPLC-DAD-ESI-MSn, with their bioaccessibility ascertained. Digested samples were analysed for their inhibitory capacity against α-glucosidase. Since some of the compounds exhibit fluorescence, both steady state and time-resolved fluorescence methods were used to investigate the binding to a blood transport protein, human serum albumin (HSA). It was found that processing induced an increase in the TPC content, which was more pronounced when US was applied. In contrast, digestion reduced the TPC content, evening out the overall effect. Still T and US pasteurized juices exhibited a higher quantity of TPC upon digestion as compared to the raw sample. No correlation was found between the TPC content and α-glucosidase inhibition, as the T and US pasteurized juices showed the highest and lowest inhibitory capacities against the enzyme, respectively. This is indicative that other compounds, such as those formed upon thermal treatment, may be involved in the antidiabetic effect of apple juice. The fluorescence study showed that binding occurred to HSA, at slightly different rates for different species present in the US treated extract. Considering energy consumption, US pasteurization is the most power consuming treatment despite its shorter duration. Overall, no univocal indication on the best pasteurization process can be gathered. Thus, it is necessary to define the desired target in order to drive technological interventions by a customized approach.</p
Epidemiological patterns of asbestos exposure and spatial clusters of incident cases of malignant mesothelioma from the Italian national registry
Abstract
BACKGROUND:
Previous ecological spatial studies of malignant mesothelioma cases, mostly based on mortality data, lack reliable data on individual exposure to asbestos, thus failing to assess the contribution of different occupational and environmental sources in the determination of risk excess in specific areas. This study aims to identify territorial clusters of malignant mesothelioma through a Bayesian spatial analysis and to characterize them by the integrated use of asbestos exposure information retrieved from the Italian national mesothelioma registry (ReNaM).
METHODS:
In the period 1993 to 2008, 15,322 incident cases of all-site malignant mesothelioma were recorded and 11,852 occupational, residential and familial histories were obtained by individual interviews. Observed cases were assigned to the municipality of residence at the time of diagnosis and compared to those expected based on the age-specific rates of the respective geographical area. A spatial cluster analysis was performed for each area applying a Bayesian hierarchical model. Information about modalities and economic sectors of asbestos exposure was analyzed for each cluster.
RESULTS:
Thirty-two clusters of malignant mesothelioma were identified and characterized using the exposure data. Asbestos cement manufacturing industries and shipbuilding and repair facilities represented the main sources of asbestos exposure, but a major contribution to asbestos exposure was also provided by sectors with no direct use of asbestos, such as non-asbestos textile industries, metal engineering and construction. A high proportion of cases with environmental exposure was found in clusters where asbestos cement plants were located or a natural source of asbestos (or asbestos-like) fibers was identifiable. Differences in type and sources of exposure can also explain the varying percentage of cases occurring in women among clusters.
CONCLUSIONS:
Our study demonstrates shared exposure patterns in territorial clusters of malignant mesothelioma due to single or multiple industrial sources, with major implications for public health policies, health surveillance, compensation procedures and site remediation programs
Myocarditis and intramural coronary vasculitis in polyarteritis nodosa: an unusual treatable form of heart failure
We describe an uncommon cardiac presentation of polyarteritis nodosa. A 68-year-old woman, with a history of fatigue, weight loss, and myalgia of the lower extremities, was admitted for congestive heart failure. Coronary arteries were normal. Endomyocardial biopsy showed active lymphocytic myocarditis with associated intramural small vessels necrotizing vasculitis. The overexpression of TLR-4 and the negativity for myocardial viruses suggested an immune mediated mechanism of cardiac damage. These histologic findings associated to weight loss >4 kg not due to dieting or other factors, myalgias, and polyneuropathy, were consistent with the diagnosis of polyarteritis nodosa. Immunosuppressive treatment, consisting of cyclophosphamide and prednisolone, led to a significant improvement of cardiac function. Polyarteritis nodosa can be the cause of unexplained heart failure due to myocarditis and intramural vessels vasculitis. Its recognition is crucial to obtain a cardiac recovery with a tailored immunosuppressive treatment
- …
