20 research outputs found
A Class of Exact Solutions For N-Anyons in a N-body Potential
A class of exact solutions are obtained for the problem of N-anyons
interacting via the N-body potential =
Unlike the
oscillator case the resulting spectrum is not linear in the anyon parameter
. However, a la oscillator case, cross-over
between the ground states is shown to occur for N-anyons
experiencing the above potential.Comment: 10 pages, no figure, latex fil
Few-anyon systems in a parabolic dot
The energy levels of two and three anyons in a two-dimensional parabolic
quantum dot and a perpendicular magnetic field are computed as power series in
1/|J|, where J is the angular momentum. The particles interact repulsively
through a coulombic (1/r) potential. In the two-anyon problem, the reached
accuracy is better than one part in 10^5. For three anyons, we study the
combined effects of anyon statistics and coulomb repulsion in the ``linear''
anyonic states.Comment: LaTeX, 6 pages, 4 postscript figure
Approximate formula for the ground state energy of anyons in 2D parabolic well
We determine approximate formula for the ground state energy of anyons in 2D
parabolic well which is valid for the arbitrary anyonic factor \nu and number
of particles N in the system. We assume that centre of mass motion energy is
not excluded from the energy of the system. Formula for ground state energy
calculated by variational principle contains logarithmic divergence at small
distances between two anyons which is regularized by cut-off parameter. By
equating this variational formula to the analogous formula of Wu near bosonic
limit (\nu ~ 0)we determine the value of the cut-off and thus derive the
approximate formula for the ground state energy for the any \nu and N. We
checked this formula at \nu=1, when anyons become fermions, for the systems
containing two to thirty particles. We find that our approximate formula has an
accuracy within 6%. It turns out, at the big number N limit the ground state
energy has square root dependence on factor \nu.Comment: 7 page
From Gauging Nonrelativistic Translations to N-Body Dynamics
We consider the gauging of space translations with time-dependent gauge
functions. Using fixed time gauge of relativistic theory, we consider the
gauge-invariant model describing the motion of nonrelativistic particles. When
we use gauge-invariant nonrelativistic velocities as independent variables the
translation gauge fields enter the equations through a d\times (d+1) matrix of
vielbein fields and their Abelian field strengths, which can be identified with
the torsion tensors of teleparallel formulation of relativity theory. We
consider the planar case (d=2) in some detail, with the assumption that the
action for the dreibein fields is given by the translational Chern-Simons term.
We fix the asymptotic transformations in such a way that the space part of the
metric becomes asymptotically Euclidean. The residual symmetries are (local in
time) translations and rigid rotations. We describe the effective interaction
of the d=2 N-particle problem and discuss its classical solution for N=2. The
phase space Hamiltonian H describing two-body interactions satisfies a
nonlinear equation H={\cal H}(\vec x,\vec p;H) which implies, after
quantization, a nonstandard form of the Schr\"odinger equation with energy
dependent fractional angular momentum eigenvalues. Quantum solutions of the
two-body problem are discussed. The bound states with discrete energy levels
correspond to a confined classical motion (for the planar distance between two
particles r\le r_0) and the scattering states with continuum energy correspond
to the classical motion for r>r_0. We extend our considerations by introducing
an external constant magnetic field and, for N=2, provide the classical and
quantum solutions in the confined and unconfined regimes.Comment: LaTeX, 38 pages, 1 picture include
Du marketing stratégique au marketing opérationnel : devenir le leader français de la construction à hautes exigences
Avant de se lancer dans quelconque activité, il est vital pour une entreprise d’en avoir analysé l’environnement, d’en déterminer les menaces et opportunités, tout comme ses points forts et ses faiblesses. Cela lui permettra alors d’établir ses facteurs clés de succès, sur lesquels elle s’appuiera pour se différencier des concurrents et élaborer sa stratégie. Dans un milieu ultra-concurrentiel, il faut avoir une stratégie affutée et bien ficelée pour se démarquer, et savoir entre autre s’entourer des bons collaborateurs. Après avoir segmenté le marché, l’entreprise peut alors cibler les segments sur lesquels elle va se focaliser et se développer. C’est à partir de ces éléments que sera élaboré le plan d’action stratégique, regroupant toutes les opérations à mettre en œuvre afin d’atteindre les objectifs fixés par l’entreprise au préalable. De la communication traditionnelle à la communication 2.0, de l’innovation au déploiement des ressources et compétences, les modes de développement sont multiples mais demandent une gestion sans faille, ainsi qu’un budget et un planning précis
