893 research outputs found

    Crystal structure and electronic states of tripotassium picene

    Full text link
    The crystal structure of potassium doped picene with an exact stoichiometry (K3C22H14, K3picene from here onwards) has been theoretically determined within Density Functional Theory allowing complete variational freedom of the crystal structure parameters and the molecular atomic positions. A modified herringbone lattice is obtained in which potassium atoms are intercalated between two paired picene molecules displaying the two possible orientations in the crystal.Along the c-axis, organic molecules alternate with chains formed by three potassium atoms. The electronic structureof the doped material resembles pristine picene, except that now the bottom of the conduction band is occupied by six electrons coming from the ionized K atoms (six per unit cell). Wavefunctions remain based mainly on picene molecular orbitals getting their dispersion from intralayer edge to face CH/pi bonding, while eigenenergies have been modified by the change in the electrostatic potential. The small dispersion along the c-axis is assigned to small H-H overlap. From the calculated electronic density of states we expect metallic behavior for potassium doped picene.Comment: Published version: 8 twocolumn pages, 7 color figures, 2 structural .cif files include

    A new model of quantum chaotic billiards: Spectral Statistics and Wavefunctions in 2D

    Full text link
    Quantum chaotic dynamics is obtained for a tight-binding model in which the energies of the atomic levels at the boundary sites are chosen at random. Results for the square lattice indicate that the energy spectrum shows a complex behavior with regions that obey the Wigner-Dyson statistics and localized and quasi-ideal states distributed according to Poisson statistics. Although the averaged spatial extension of the eigenstates in the present model scales with the size of the system as in the Gaussian Orthogonal Ensemble, the fluctuations are much larger.Comment: 4 twocolumnn pages in revtex style, 4 postscript figures, to be published in PRL, send comments to [email protected]

    Lattice-Spin Mechanism in Colossal Magnetoresistant Manganites

    Get PDF
    We present a single-orbital double-exchange model, coupled with cooperative phonons (the so called breathing-modes of the oxygen octahedra in manganites). The model is studied with Monte Carlo simulations. For a finite range of doping and coupling constants, a first-order Metal-Insulator phase transition is found, that coincides with the Paramagnetic-Ferromagnetic phase transition. The insulating state is due to the self-trapping of every carrier within an oxygen octahedron distortion.Comment: 4 pages, 5 figures, ReVTeX macro, accepted for publication in PR

    Water dimer diffusion on Pd{111} assisted by an H-bond donor-acceptor tunneling exchange

    Get PDF
    Based on the results of density functional theory calculations, a novel mechanism for the diffusion of water dimers on metal surfaces is proposed, which relies on the ability of H bonds to rearrange through quantum tunneling. The mechanism involves quasifree rotation of the dimer and exchange of H-bond donor and acceptor molecules. At appropriate temperatures, water dimers diffuse more rapidly than water monomers, thus providing a physical explanation for the experimentally measured high diffusivity of water dimers on Pd{111} [Mitsui et al., Science 297, 1850 (2002)]
    corecore