893 research outputs found
Crystal structure and electronic states of tripotassium picene
The crystal structure of potassium doped picene with an exact stoichiometry
(K3C22H14, K3picene from here onwards) has been theoretically determined within
Density Functional Theory allowing complete variational freedom of the crystal
structure parameters and the molecular atomic positions. A modified herringbone
lattice is obtained in which potassium atoms are intercalated between two
paired picene molecules displaying the two possible orientations in the
crystal.Along the c-axis, organic molecules alternate with chains formed by
three potassium atoms. The electronic structureof the doped material resembles
pristine picene, except that now the bottom of the conduction band is occupied
by six electrons coming from the ionized K atoms (six per unit cell).
Wavefunctions remain based mainly on picene molecular orbitals getting their
dispersion from intralayer edge to face CH/pi bonding, while eigenenergies have
been modified by the change in the electrostatic potential. The small
dispersion along the c-axis is assigned to small H-H overlap. From the
calculated electronic density of states we expect metallic behavior for
potassium doped picene.Comment: Published version: 8 twocolumn pages, 7 color figures, 2 structural
.cif files include
A new model of quantum chaotic billiards: Spectral Statistics and Wavefunctions in 2D
Quantum chaotic dynamics is obtained for a tight-binding model in which the
energies of the atomic levels at the boundary sites are chosen at random.
Results for the square lattice indicate that the energy spectrum shows a
complex behavior with regions that obey the Wigner-Dyson statistics and
localized and quasi-ideal states distributed according to Poisson statistics.
Although the averaged spatial extension of the eigenstates in the present model
scales with the size of the system as in the Gaussian Orthogonal Ensemble, the
fluctuations are much larger.Comment: 4 twocolumnn pages in revtex style, 4 postscript figures, to be
published in PRL, send comments to [email protected]
Lattice-Spin Mechanism in Colossal Magnetoresistant Manganites
We present a single-orbital double-exchange model, coupled with cooperative
phonons (the so called breathing-modes of the oxygen octahedra in manganites).
The model is studied with Monte Carlo simulations. For a finite range of doping
and coupling constants, a first-order Metal-Insulator phase transition is
found, that coincides with the Paramagnetic-Ferromagnetic phase transition. The
insulating state is due to the self-trapping of every carrier within an oxygen
octahedron distortion.Comment: 4 pages, 5 figures, ReVTeX macro, accepted for publication in PR
Water dimer diffusion on Pd{111} assisted by an H-bond donor-acceptor tunneling exchange
Based on the results of density functional theory calculations, a novel mechanism for the diffusion of water dimers on metal surfaces is proposed, which relies on the ability of H bonds to rearrange through quantum tunneling. The mechanism involves quasifree rotation of the dimer and exchange of H-bond donor and acceptor molecules. At appropriate temperatures, water dimers diffuse more rapidly than water monomers, thus providing a physical explanation for the experimentally measured high diffusivity of water dimers on Pd{111} [Mitsui et al., Science 297, 1850 (2002)]
- …
