1,288 research outputs found

    Herschel ATLAS : the cosmic star formation history of quasar host galaxies

    Get PDF
    We present a derivation of the star formation rate per comoving volume of quasar host galaxies, derived from stacking analyses of far-infrared to mm-wave photometry of quasars with redshifts 0 z 6 and absolute I-band magnitudes -22 > I-AB > -32 We use the science demonstration observations of the first similar to 16 deg(2) from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) in which there are 240 quasars from the Sloan Digital Sky Survey (SDSS) and a further 171 from the 2dF-SDSS LRG and QSO (2SLAQ) survey. We supplement this data with a compilation of data from IRAS, ISO, Spitzer, SCUBA and MAMBO. H-ATLAS alone statistically detects the quasars in its survey area at > 5 sigma at 250, 350 and 500 mu m. From the compilation as a whole we find striking evidence of downsizing in quasar host galaxy formation: low-luminosity quasars with absolute magnitudes in the range -22 > I-AB > -24 have a comoving star formation rate (derived from 100 mu m rest-frame luminosities) peaking between redshifts of 1 and 2, while high-luminosity quasars with I-AB -26 have a maximum contribution to the star formation density at z similar to 3. The volume-averaged star formation rate of -22 > IAB > -24 quasars evolves as (1 + z)(2.3 +/- 0.7) at z 2, but the evolution at higher luminosities is much faster reaching (1 + z)(10 +/- 1) at -26 > I-AB > -28. We tentatively interpret this as a combination of a declining major merger rate with time and gas consumption reducing fuel for both black hole accretion and star formation

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    An explorative qualitative study to determine the footwear needs of workers in standing environments

    Get PDF
    Background: Many work places require standing for prolonged periods of time and are potentially damaging to health, with links to musculoskeletal disorders and acute trauma from workplace accidents. Footwear provides the only interaction between the body and the ground and therefore a potential means to impact musculoskeletal disorders. However, there is very limited research into the necessary design and development of footwear based on both the physical environmental constraints and the personal preference of the workers. Therefore, the purpose of this study is to explore workers needs for footwear in the ‘standing’ workplace in relation to MSD, symptoms, comfort and design. Method: Semi-structured interviews were conducted with participants from demanding work environments that require standing for high proportions of the working day. Thematic analysis was used to analyse the results and gain an exploratory understanding into the footwear needs of these workers. Results: Interviews revealed the environmental demands and a very high percentage of musculoskeletal disorders, including day to day discomfort and chronic problems. It was identified that when designing work footwear for standing environments, the functionality of the shoe for the environment must be addressed, the sensations and symptoms of the workers taken into account to encourage adherence and the decision influencers should be met to encourage initial footwear choice. Meeting all these criteria could encourage the use of footwear with the correct safety features and comfort. Development of the correct footwear and increased education regarding foot health and footwear choice could help to reduce or improve the effect of the high number of musculoskeletal disorders repeatedly recorded in jobs that require prolonged periods of standing. Conclusion: This study provides a unique insight into the footwear needs of some workers in environments that require prolonged standing. This user based enquiry has provided information which is important to workplace footwear design

    Optical Coherence Tomography in the UK Biobank Study – Rapid Automated Analysis of Retinal Thickness for Large Population-Based Studies

    Get PDF
    Purpose: To describe an approach to the use of optical coherence tomography (OCT) imaging in large, population-based studies, including methods for OCT image acquisition, storage, and the remote, rapid, automated analysis of retinal thickness. Methods: In UK Biobank, OCT images were acquired between 2009 and 2010 using a commercially available “spectral domain” OCT device (3D OCT-1000, Topcon). Images were obtained using a raster scan protocol, 6 mm x 6 mm in area, and consisting of 128 B-scans. OCT image sets were stored on UK Biobank servers in a central repository, adjacent to high performance computers. Rapid, automated analysis of retinal thickness was performed using custom image segmentation software developed by the Topcon Advanced Biomedical Imaging Laboratory (TABIL). This software employs dual-scale gradient information to allow for automated segmentation of nine intraretinal boundaries in a rapid fashion. Results: 67,321 participants (134,642 eyes) in UK Biobank underwent OCT imaging of both eyes as part of the ocular module. 134,611 images were successfully processed with 31 images failing segmentation analysis due to corrupted OCT files or withdrawal of subject consent for UKBB study participation. Average time taken to call up an image from the database and complete segmentation analysis was approximately 120 seconds per data set per login, and analysis of the entire dataset was completed in approximately 28 days. Conclusions: We report an approach to the rapid, automated measurement of retinal thickness from nearly 140,000 OCT image sets from the UK Biobank. In the near future, these measurements will be publically available for utilization by researchers around the world, and thus for correlation with the wealth of other data collected in UK Biobank. The automated analysis approaches we describe may be of utility for future large population-based epidemiological studies, clinical trials, and screening programs that employ OCT imaging

    Modeling of negative Poisson’s ratio (auxetic) crystalline cellulose Iβ

    Get PDF
    Energy minimizations for unstretched and stretched cellulose models using an all-atom empirical force field (Molecular Mechanics) have been performed to investigate the mechanism for auxetic (negative Poisson’s ratio) response in crystalline cellulose Iβ from kraft cooked Norway spruce. An initial investigation to identify an appropriate force field led to a study of the structure and elastic constants from models employing the CVFF force field. Negative values of on-axis Poisson’s ratios nu31 and nu13 in the x1-x3 plane containing the chain direction (x3) were realized in energy minimizations employing a stress perpendicular to the hydrogen-bonded cellobiose sheets to simulate swelling in this direction due to the kraft cooking process. Energy minimizations of structural evolution due to stretching along the x3 chain direction of the ‘swollen’ (kraft cooked) model identified chain rotation about the chain axis combined with inextensible secondary bonds as the most likely mechanism for auxetic response

    Potential applications of nanotechnology in thermochemical conversion of microalgal biomass

    Get PDF
    The rapid decrease in fossil reserves has significantly increased the demand of renewable and sustainable energy fuel resources. Fluctuating fuel prices and significant greenhouse gas (GHG) emission levels have been key impediments associated with the production and utilization of nonrenewable fossil fuels. This has resulted in escalating interests to develop new and improve inexpensive carbon neutral energy technologies to meet future demands. Various process options to produce a variety of biofuels including biodiesel, bioethanol, biohydrogen, bio-oil, and biogas have been explored as an alternative to fossil fuels. The renewable, biodegradable, and nontoxic nature of biofuels make them appealing as alternative fuels. Biofuels can be produced from various renewable resources. Among these renewable resources, algae appear to be promising in delivering sustainable energy options. Algae have a high carbon dioxide (CO2) capturing efficiency, rapid growth rate, high biomass productivity, and the ability to grow in non-potable water. For algal biomass, the two main conversion pathways used to produce biofuel include biochemical and thermochemical conversions. Algal biofuel production is, however, challenged with process scalability for high conversion rates and high energy demands for biomass harvesting. This affects the viable achievement of industrial-scale bioprocess conversion under optimum economy. Although algal biofuels have the potential to provide a sustainable fuel for future, active research aimed at improving upstream and downstream technologies is critical. New technologies and improved systems focused on photobioreactor design, cultivation optimization, culture dewatering, and biofuel production are required to minimize the drawbacks associated with existing methods. Nanotechnology has the potential to address some of the upstream and downstream challenges associated with the development of algal biofuels. It can be applied to improve system design, cultivation, dewatering, biomass characterization, and biofuel conversion. This chapter discusses thermochemical conversion of microalgal biomass with recent advances in the application of nanotechnology to enhance the development of biofuels from algae. Nanotechnology has proven to improve the performance of existing technologies used in thermochemical treatment and conversion of biomass. The different bioprocess aspects, such as reactor design and operation, analytical techniques, and experimental validation of kinetic studies, to provide insights into the application of nanotechnology for enhanced algal biofuel production are addressed

    Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice

    Get PDF
    Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6) or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6) to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection
    corecore