424 research outputs found

    The effects of disk and dust structure on observed polarimetric images of protoplanetary disks

    Full text link
    Imaging polarimetry is a powerful tool for imaging faint circumstellar material. For a correct analysis of observations we need to fully understand the effects of dust particle parameters, as well as the effects of the telescope, atmospheric seeing, and assumptions about the data reduction and processing of the observed signal. Here we study the major effects of dust particle structure, size-dependent grain settling, and instrumental properties. We performed radiative transfer modeling using different dust particle models and disk structures. To study the influence of seeing and telescope diffraction we ran the models through an instrument simulator for the ExPo dual-beam imaging polarimeter mounted at the 4.2m William Herschel Telescope (WHT). Particle shape and size have a strong influence on the brightness and detectability of the disks. In the simulated observations, the central resolution element also contains contributions from the inner regions of the protoplanetary disk besides the unpolarized central star. This causes the central resolution element to be polarized, making simple corrections for instrumental polarization difficult. This effect strongly depends on the spatial resolution, so adaptive optics systems are needed for proper polarization calibration. We find that the commonly employed homogeneous sphere model gives results that differ significantly from more realistic models. For a proper analysis of the wealth of data available now or in the near future, one must properly take the effects of particle types and disk structure into account. The observed signal depends strongly on the properties of these more realistic models, thus providing a potentially powerful diagnostic. We conclude that it is important to correctly understand telescope depolarization and calibration effects for a correct interpretation of the degree of polarization.Comment: Accepted for publication in A&

    The deep-sea hub of the ANTARES neutrino telescope

    Get PDF
    The ANTARES neutrino telescope, currently under construction at 2500 m depth off the French Mediterranean coast, will contain 12 detection lines, powered and read out through a deep-sea junction box (JB) hub. Electrical energy from the shore station is distributed through a transformer with multiple secondary windings and a plugboard with 16 deep sea-mateable electro-optic connectors. Connections are made to the JB outputs using manned or remotely operated submersible vehicles. The triply redundant power management and slow control system is based on two identical AC-powered systems, communicating with the shore through 160 Mb/s fibre G-links and a third battery-powered system using a slower link. We describe the power and slow control systems of the underwater hub

    Measurement of the Generalized Forward Spin Polarizabilities of the Neutron

    Full text link
    The generalized forward spin polarizabilities γ0\gamma_0 and δLT\delta_{LT} of the neutron have been extracted for the first time in a Q2Q^2 range from 0.1 to 0.9 GeV2^2. Since γ0\gamma_0 is sensitive to nucleon resonances and δLT\delta_{LT} is insensitive to the Δ\Delta resonance, it is expected that the pair of forward spin polarizabilities should provide benchmark tests of the current understanding of the chiral dynamics of QCD. The new results on δLT\delta_{LT} show significant disagreement with Chiral Perturbation Theory calculations, while the data for γ0\gamma_0 at low Q2Q^2 are in good agreement with a next-to-lead order Relativistic Baryon Chiral Perturbation theory calculation. The data show good agreement with the phenomenological MAID model.Comment: 5 pages, 2 figures, corrected typo in author name, published in PR

    A New Strategy for Deep Wide-Field High Resolution Optical Imaging

    Get PDF
    We propose a new strategy for obtaining enhanced resolution (FWHM = 0.12 arcsec) deep optical images over a wide field of view. As is well known, this type of image quality can be obtained in principle simply by fast guiding on a small (D = 1.5m) telescope at a good site, but only for target objects which lie within a limited angular distance of a suitably bright guide star. For high altitude turbulence this 'isokinetic angle' is approximately 1 arcminute. With a 1 degree field say one would need to track and correct the motions of thousands of isokinetic patches, yet there are typically too few sufficiently bright guide stars to provide the necessary guiding information. Our proposed solution to these problems has two novel features. The first is to use orthogonal transfer charge-coupled device (OTCCD) technology to effectively implement a wide field 'rubber focal plane' detector composed of an array of cells which can be guided independently. The second is to combine measured motions of a set of guide stars made with an array of telescopes to provide the extra information needed to fully determine the deflection field. We discuss the performance, feasibility and design constraints on a system which would provide the collecting area equivalent to a single 9m telescope, a 1 degree square field and 0.12 arcsec FWHM image quality.Comment: 46 pages, 22 figures, submitted to PASP, a version with higher resolution images and other supplementary material can be found at http://www.ifa.hawaii.edu/~kaiser/wfhr

    Q^2 Evolution of the Neutron Spin Structure Moments using a He-3 Target

    Full text link
    We have measured the spin structure functions g1g_1 and g2g_2 of 3^3He in a double-spin experiment by inclusively scattering polarized electrons at energies ranging from 0.862 to 5.07 GeV off a polarized 3^3He target at a 15.5^{\circ} scattering angle. Excitation energies covered the resonance and the onset of the deep inelastic regions. We have determined for the first time the Q2Q^2 evolution of Γ1(Q2)=01g1(x,Q2)dx\Gamma_1(Q^2)=\int_0^{1} g_1(x,Q^2) dx, Γ2(Q2)=01g2(x,Q2)dx\Gamma_2(Q^2)=\int_0^1 g_2(x,Q^2) dx and d2(Q2)=01x2[2g1(x,Q2)+3g2(x,Q2)]dxd_2 (Q^2) = \int_0^1 x^2[ 2g_1(x,Q^2) + 3g_2(x,Q^2)] dx for the neutron in the range 0.1 GeV2^2 Q2\leq Q^2 \leq 0.9 GeV2^2 with good precision. Γ1(Q2) \Gamma_1(Q^2) displays a smooth variation from high to low Q2Q^2. The Burkhardt-Cottingham sum rule holds within uncertainties and d2d_2 is non-zero over the measured range.Comment: 5 pages, 2 figures, submitted to Phys. Rev. Lett.. Updated Hermes data in Fig. 2 (top panel) and their corresponding reference. Updated the low x extrapolation error Fig. 2 (middle panel). Corrected references to ChiPT calculation

    Status and Recent Results of the Acoustic Neutrino Detection Test System AMADEUS

    Full text link
    The AMADEUS system is an integral part of the ANTARES neutrino telescope in the Mediterranean Sea. The project aims at the investigation of techniques for acoustic neutrino detection in the deep sea. Installed at a depth of more than 2000m, the acoustic sensors of AMADEUS are based on piezo-ceramics elements for the broad-band recording of signals with frequencies ranging up to 125kHz. AMADEUS was completed in May 2008 and comprises six "acoustic clusters", each one holding six acoustic sensors that are arranged at distances of roughly 1m from each other. The clusters are installed with inter-spacings ranging from 15m to 340m. Acoustic data are continuously acquired and processed at a computer cluster where online filter algorithms are applied to select a high-purity sample of neutrino-like signals. 1.6 TB of data were recorded in 2008 and 3.2 TB in 2009. In order to assess the background of neutrino-like signals in the deep sea, the characteristics of ambient noise and transient signals have been investigated. In this article, the AMADEUS system will be described and recent results will be presented.Comment: 7 pages, 8 figures. Proceedings of ARENA 2010, the 4th International Workshop on Acoustic and Radio EeV Neutrino Detection Activitie

    The ANTARES Optical Beacon System

    Get PDF
    ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirable. Accordingly, different time calibration systems have been developed for the ANTARES telescope. In this article, a system based on Optical Beacons, a set of external and well-controlled pulsed light sources located throughout the detector, is described. This calibration system takes into account the optical properties of sea water, which is used as the detection volume of the ANTARES telescope. The design, tests, construction and first results of the two types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.

    Large Momentum Transfer Measurements of the Deuteron Elastic Structure Function A(Q^2) at Jefferson Laboratory

    Full text link
    The deuteron elastic structure function A(Q^2) has been extracted in the Q^2 range 0.7 to 6.0 (GeV/c)^2 from cross section measurements of elastic electron-deuteron scattering in coincidence using the Hall A Facility of Jefferson Laboratory. The data are compared to theoretical models based on the impulse approximation with inclusion of meson-exchange currents, and to predictions of quark dimensional scaling and perturbative quantum chromodynamicsComment: Submitted to Physical Review Letter

    The reaction dynamics of the 16O(e,e'p) cross section at high missing energies

    Full text link
    We measured the cross section and response functions (R_L, R_T, and R_LT) for the 16O(e,e'p) reaction in quasielastic kinematics for missing energies 25 <= E_miss <= 120 MeV at various missing momenta P_miss <= 340 MeV/c. For 25 < E_miss < 50 MeV and P_miss \approx 60 MeV/c, the reaction is dominated by single-nucleon knockout from the 1s1/2-state. At larger P_miss, the single-particle aspects are increasingly masked by more complicated processes. For E_miss > 60 MeV and P_miss > 200 MeV/c, the cross section is relatively constant. Calculations which include contributions from pion exchange currents, isobar currents and short-range correlations account for the shape and the transversity but only for half of the magnitude of the measured cross section.Comment: 6 pages, 4 figures, submitted to Phys Rev Lett, formatting error fixe
    corecore