328 research outputs found

    Allosteric inhibition of Aurora-A kinase by a synthetic vNAR domain

    No full text
    The vast majority of clinically-approved protein kinase inhibitors target the ATP binding pocket directly. Consequently, many inhibitors have broad selectivity profiles and most have significant off-target effects. Allosteric inhibitors are generally more selective, but are difficult to identify because allosteric binding sites are often unknown or poorly characterized. Aurora-A is activated through binding of TPX2 to an allosteric site on the kinase catalytic domain, and this knowledge could be exploited to generate an inhibitor. Here, we generated an allosteric inhibitor of Aurora-A kinase based on a synthetic, vNAR single domain scaffold, vNAR-D01. Biochemical studies and a crystal structure of the Aurora-A/vNAR-D01 complex show that the vNAR domain stabilizes an inactive conformation, in which the αC-helix is distorted, the canonical Lys-Glu salt bridge is broken, and the regulatory (R-) spine is disrupted by an additional hydrophobic side chain from the activation loop. These studies illustrate how single domain antibodies can be used to characterize the regulatory mechanisms of kinases and provide a rational basis for structure-guided design of allosteric Aurora-A kinase inhibitors

    Isabelle Vernos: Motoring around the mitotic spindle

    Get PDF
    Vernos uses cutting-edge microscopy to track spindle assembly in Xenopus eggs

    Regulation of Op18 during Spindle Assembly in Xenopus Egg Extracts

    Get PDF
    Oncoprotein 18 (Op18) is a microtubule-destabilizing protein that is negatively regulated by phosphorylation. To evaluate the role of the three Op18 phosphorylation sites in Xenopus (Ser 16, 25, and 39), we added wild-type Op18, a nonphosphorylatable triple Ser to Ala mutant (Op18-AAA), and to mimic phosphorylation, a triple Ser to Glu mutant (Op18-EEE) to egg extracts and monitored spindle assembly. Op18-AAA dramatically decreased microtubule length and density, while Op18-EEE did not significantly affect spindle microtubules. Affinity chromatography with these proteins revealed that the microtubule-destabilizing activity correlated with the ability of Op18 to bind tubulin. Since hyperphosphorylation of Op18 is observed upon addition of mitotic chromatin to extracts, we reasoned that chromatin-associated proteins might play a role in Op18 regulation. We have performed a preliminary characterization of the chromatin proteins recruited to DNA beads, and identified the Xenopus polo-like kinase Plx1 as a chromatin-associated kinase that regulates Op18 phosphorylation. Depletion of Plx1 inhibits chromatin-induced Op18 hyperphosphorylation and spindle assembly in extracts. Therefore, Plx1 may promote microtubule stabilization and spindle assembly by inhibiting Op18

    The mechanism of spindle assembly: functions of Ran and its target TPX2

    Get PDF
    Recent work has provided new insights into the mechanism of spindle assembly. Growing evidence supports a model in which the small GTPase Ran plays a central role in this process. Here, we examine the evidence for the existence of a RanGTP gradient around mitotic chromosomes and some controversial data on the role that chromosomes play in spindle assembly. We review the current knowledge on the Ran downstream targets for spindle assembly and we focus on the multiple roles of TPX2, one of the targets of RanGTP during cell division

    Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα

    Get PDF
    © 2012 Samejima et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication dateMitotic chromosome formation involves a relatively minor condensation of the chromatin volume coupled with a dramatic reorganization into the characteristic "X" shape. Here we report results of a detailed morphological analysis, which revealed that chromokinesin KIF4 cooperated in a parallel pathway with condensin complexes to promote the lateral compaction of chromatid arms. In this analysis, KIF4 and condensin were mutually dependent for their dynamic localization on the chromatid axes. Depletion of either caused sister chromatids to expand and compromised the "intrinsic structure" of the chromosomes (defined in an in vitro assay), with loss of condensin showing stronger effects. Simultaneous depletion of KIF4 and condensin caused complete loss of chromosome morphology. In these experiments, topoisomerase IIα contributed to shaping mitotic chromosomes by promoting the shortening of the chromatid axes and apparently acting in opposition to the actions of KIF4 and condensins. These three proteins are major determinants in shaping the characteristic mitotic chromosome morphology

    Localization of the Kinesin-like Protein Xklp2 to Spindle Poles Requires a Leucine Zipper, a Microtubule-associated Protein, and Dynein

    Get PDF
    Xklp2 is a plus end–directed Xenopus kinesin-like protein localized at spindle poles and required for centrosome separation during spindle assembly in Xenopus egg extracts. A glutathione-S-transferase fusion protein containing the COOH-terminal domain of Xklp2 (GST-Xklp2-Tail) was previously found to localize to spindle poles (Boleti, H., E. Karsenti, and I. Vernos. 1996. Cell. 84:49–59). Now, we have examined the mechanism of localization of GST-Xklp2-Tail. Immunofluorescence and electron microscopy showed that Xklp2 and GST-Xklp2-Tail localize specifically to the minus ends of spindle pole and aster microtubules in mitotic, but not in interphase, Xenopus egg extracts. We found that dimerization and a COOH-terminal leucine zipper are required for this localization: a single point mutation in the leucine zipper prevented targeting. The mechanism of localization is complex and two additional factors in mitotic egg extracts are required for the targeting of GST-Xklp2-Tail to microtubule minus ends: (a) a novel 100-kD microtubule-associated protein that we named TPX2 (Targeting protein for Xklp2) that mediates the binding of GST-Xklp2-Tail to microtubules and (b) the dynein–dynactin complex that is required for the accumulation of GST-Xklp2-Tail at microtubule minus ends. We propose two molecular mechanisms that could account for the localization of Xklp2 to microtubule minus ends

    Aurora A kinase and its substrate TACC3 are required for central spindle assembly

    Full text link

    Function and regulation of Maskin, a TACC family protein, in microtubule growth during mitosis

    Get PDF
    The Xenopus protein Maskin has been previously identified and characterized in the context of its role in translational control during oocyte maturation. Maskin belongs to the TACC protein family. In other systems, members of this family have been shown to localize to centrosomes during mitosis and play a role in microtubule stabilization. Here we have examined the putative role of Maskin in spindle assembly and centrosome aster formation in the Xenopus egg extract system. Depletion and reconstitution experiments indicate that Maskin plays an essential role for microtubule assembly during M-phase. We show that Maskin interacts with XMAP215 and Eg2, the Xenopus Aurora A kinase in vitro and in the egg extract. We propose that Maskin and XMAP215 cooperate to oppose the destabilizing activity of XKCM1 therefore promoting microtubule growth from the centrosome and contributing to the determination of microtubule steady-state length. Further more, we show that Maskin localization and function is regulated by Eg2 phosphorylation
    corecore