548 research outputs found
A Segmentation Transfer Approach for Rigid Models
International audienceIn this paper, we propose using a segmented example model to perform a semantic oriented segmentation of rigid 3D models of the same class (tables, chairs, etc.). For this, we introduce an alignment method that maps the meaningful parts of the models and we develop a novel approach based on random walks to transfer a consistent segmentation from the example to the target model. The example-driven segmentation is fast and entirely automatic. We demonstrate the effectiveness of our approach through multiple results of inter-shape segmentation transfer presented for different classes of rigid models
Gene expression analysis defines the proximal tubule as the compartment for endocytic receptor-mediated uptake in the Xenopus pronephric kidney
Endocytic receptors in the proximal tubule of the mammalian kidney are responsible for the reuptake of numerous ligands, including lipoproteins, sterols, vitamin-binding proteins, and hormones, and they can mediate drug-induced nephrotoxicity. In this paper, we report the first evidence indicating that the pronephric kidneys of Xenopus tadpoles are capable of endocytic transport. We establish that the Xenopus genome harbors genes for the known three endocytic receptors megalin/LRP2, cubilin, and amnionless. The Xenopus endocytic receptor genes share extensive synteny with their mammalian counterparts. In situ hybridizations demonstrated that endocytic receptor expression is highly tissue specific, primarily in the pronephric kidney, and did not occur prior to neurulation. Expression was strictly confined to proximal tubules of the pronephric kidney, which closely resembles the situation reported in mammalian kidneys. By immunohistochemistry, we demonstrated that Xenopus pronephric tubule epithelia express high amounts of the endocytic receptors megalin/lrp2 and cubilin in the apical plasma membrane. Furthermore, functional aspects of the endocytic receptors were revealed by the vesicular localization of retinol-binding protein in the proximal tubules, probably representing endocytosed protein. In summary, we provide here the first comprehensive report of endocytic receptor expression, including amnionless, in a nonmammalian species. Remarkably, renal endocytic receptor expression and function in the Xenopus pronephric kidney closely mirrors the situation in the mammalian kidney. The Xenopus pronephric kidney therefore represents a novel, simple model for physiological studies on the molecular mechanisms underlying renal tubular endocytosi
Characterizing Width Uniformity by Wave Propagation
This work describes a novel image analysis approach to characterize the
uniformity of objects in agglomerates by using the propagation of normal
wavefronts. The problem of width uniformity is discussed and its importance for
the characterization of composite structures normally found in physics and
biology highlighted. The methodology involves identifying each cluster (i.e.
connected component) of interest, which can correspond to objects or voids, and
estimating the respective medial axes by using a recently proposed wavefront
propagation approach, which is briefly reviewed. The distance values along such
axes are identified and their mean and standard deviation values obtained. As
illustrated with respect to synthetic and real objects (in vitro cultures of
neuronal cells), the combined use of these two features provide a powerful
description of the uniformity of the separation between the objects, presenting
potential for several applications in material sciences and biology.Comment: 14 pages, 23 figures, 1 table, 1 referenc
PlantNet Participation at LifeCLEF2014 Plant Identification Task
International audienceThis paper describes the participation of Inria within the Pl@ntNet project7 at the LifeCLEF2014 plant identication task. The aim of the task was to produce a list of relevant species for each plant observation in a test dataset according to a training dataset. Each plant observation contains several annotated pictures with organ/view tags: Flower, Leaf, Fruit, Stem, Branch, Entire, Scan (exclusively of leaf). Our system treated independently each category of organ/view and then a late hierarchical fusion is used in order to combine the results on visual content analysis from the most local level analysis in pictures to the highest level related to a plant observation. For the photographs of flowers, leaves, fruits, stems, branches and entire views of plants, a large scale matching approach of local features extracted using different spatial constraints is used. For scans, the method combines the large scale matching approach with shape descriptors and geometric parameters on shape boundary. Then, several fusion methods are experimented through the four submitted runs in order to combine hierarchically the local responses to the final response at the plant observation level. The four submitted runs obtained good results and got the 4th to the 7th place over 27 submitted runs by 10 participating team
Visualization algorithm for CSG polyhedral solids
International audienceAn algorithm is presented here to visualize here to visualize CSG solids in wireframe with hidden faces eliminated. The approach taken is to construct the image of the CSG solid directly from the CSG tree. This algorithm takes into account the face coherence property and the depth of the faces to minimize the number of rays fired during the process. It mixes a two-dimensional polygonal clipping and a ray-casting algorithm
Detailed investigations of proximal tubular function in Imerslund-Grasbeck syndrome
BACKGROUND: Imerslund-Gräsbeck Syndrome (IGS) is a rare genetic disorder characterised by juvenile megaloblastic anaemia. IGS is caused by mutations in either of the genes encoding the intestinal intrinsic factor-vitamin B(12) receptor complex, cubam. The cubam receptor proteins cubilin and amnionless are both expressed in the small intestine as well as the proximal tubules of the kidney and exhibit an interdependent relationship for post-translational processing and trafficking. In the proximal tubules cubilin is involved in the reabsorption of several filtered plasma proteins including vitamin carriers and lipoproteins. Consistent with this, low-molecular-weight proteinuria has been observed in most patients with IGS. The aim of this study was to characterise novel disease-causing mutations and correlate novel and previously reported mutations with the presence of low-molecular-weight proteinuria. METHODS: Genetic screening was performed by direct sequencing of the CUBN and AMN genes and novel identified mutations were characterised by in silico and/or in vitro investigations. Urinary protein excretion was analysed by immunoblotting and high-resolution gel electrophoresis of collected urines from patients and healthy controls to determine renal phenotype. RESULTS: Genetic characterisation of nine IGS patients identified two novel AMN frameshift mutations alongside a frequently reported AMN splice site mutation and two CUBN missense mutations; one novel and one previously reported in Finnish patients. The novel AMN mutations were predicted to result in functionally null AMN alleles with no cell-surface expression of cubilin. Also, the novel CUBN missense mutation was predicted to affect structural integrity of the IF-B(12) binding site of cubilin and hereby most likely cubilin cell-surface expression. Analysis of urinary protein excretion in the patients and 20 healthy controls revealed increased urinary excretion of cubilin ligands including apolipoprotein A-I, transferrin, vitamin D-binding protein, and albumin. This was, however, only observed in patients where plasma membrane expression of cubilin was predicted to be perturbed. CONCLUSIONS: In the present study, mutational characterisation of nine IGS patients coupled with analyses of urinary protein excretion provide additional evidence for a correlation between mutation type and presence of the characteristic low-molecular-weight proteinuria
- …
