2,635 research outputs found
Simultaneous dehydrogenation of organic compounds and hydrogen removal by hydride forming alloys
The applicability of hydrogen-absorbing metals in dehydrogenation reactions was investigated. Based on thermodynamic considerations, operating ranges were defined within which an increase of the reactant c onversion can be achieved owing to an in situ hydrogen removal by the alloy. Low plateau pressures (e.g. < 0.01 MPa) at high temperature (e.g. > 473 K) are required for economic applications. An (economic) improvement of the alkane-to-alkene conversion does not seem feasible owing to the extreme pressure and temperature conditions. In the present study as a model system, 2-propanol was dehydrogenated in a batch process at 473 K and 0.1-1.0 MPa over a Cu/CuO catalyst in the presence of an excess amount of Mg2.4Ni. The hydride forming metal alloy appears to be able to affect the hydrogen balance of the experimental system owing to absorption or desorption. However, an unexpected catalytic effect of the metal hydride was observed towards condensation reactions. Owing to the loss in selectivity, Mg2.4Ni, is not applicable for an improvement of the dehydrogenation processes for secondary alcohols
Optically probing symmetry breaking in the chiral magnet Cu2OSeO3
We report on the linear optical properties of the chiral magnet Cu2OSeO3,
specifically associated with the absence of inversion symmetry, the chiral
crystallographic structure, and magnetic order. Through spectroscopic
ellipsometry, we observe local crystal-field excitations below the
charge-transfer gap. These crystal-field excitations are optically allowed due
to the lack of inversion symmetry at the Cu sites. Optical polarization
rotation measurements were used to study the structural chirality and magnetic
order. The temperature dependence of the natural optical rotation, originating
in the chiral crystal structure, provides evidence for a finite
magneto-electric effect in the helimagnetic phase. We find a large
magneto-optical susceptibility on the order of V(540nm)~10^4 rad/(T*m) in the
helimagnetic phase and a maximum Faraday rotation of ~165deg/mm in the
ferrimagnetic phase. The large value of V can be explained by considering spin
cluster formation and the relative ease of domain reorientation in this
metamagnetic material. The magneto-optical activity allows us to map the
magnetic phase diagram, including the skyrmion lattice phase. In addition to
this, we probe and discuss the nature of the various magnetic phase transitions
in Cu2OSeO3.Comment: 9 pages, 10 figure
Function length as a tool for malware classification
The proliferation of malware is a serious threat to computer and information systems throughout the world. Antimalware companies are continually challenged to identify and counter new malware as it is released into the wild. In attempts to speed up this identification and response, many researchers have examined ways to efficiently automate classification of malware as it appears in the environment. In this paper, we present a fast, simple and scalable method of classifying Trojans based only on the lengths of their functions. Our results indicate that function length may play a significant role in classifying malware, and, combined with other features, may result in a fast, inexpensive and scalable method of malware classification.<br /
Rigorous Multicomponent Reactive Separations Modelling : Complete Consideration of Reaction-Diffusion Phenomena
This paper gives the first step of the development of a rigorous multicomponent reactive separation model. Such a model is highly essential to further the optimization of acid gases removal plants (CO2 capture, gas treating, etc.) in terms of size and energy consumption, since chemical solvents are conventionally used.Firstly, two main modelling approaches are presented: the equilibrium-based and the rate-based approaches. Secondly, an extended rate-based model with rigorous modelling methodology for diffusion-reaction phenomena is proposed. The film theory and the generalized Maxwell-Stefan equations are used in order to characterize multicomponent interactions. The complete chain of chemical reactions is taken into account. The reactions can be kinetically controlled or at chemical equilibrium, and they are considered for both liquid film and liquid bulk. Thirdly, the method of numerical resolution is described. Coupling the generalized Maxwell-Stefan equations with chemical equilibrium equations leads to a highly non-linear Differential-Algebraic Equations system known as DAE index 3. The set of equations is discretized with finite-differences as its integration by Gear method is complex. The resulting algebraic system is resolved by the Newton- Raphson method. Finally, the present model and the associated methods of numerical resolution are validated for the example of esterification of methanol. This archetype non-electrolytic system permits an interesting analysis of reaction impact on mass transfer, especially near the phase interface. The numerical resolution of the model by Newton-Raphson method gives good results in terms of calculation time and convergence. The simulations show that the impact of reactions at chemical equilibrium and that of kinetically controlled reactions with high kinetics on mass transfer is relatively similar. Moreover, the Fick’s law is less adapted for multicomponent mixtures where some abnormalities such as counter-diffusion take place
Structure and activity relationships for amine-based CO2 absorbents-II
A study to determine the structure and activity relationships of various amine-based CO2 absorbents was performed, in which the absorption of pure CO2 at atmospheric pressure was measured to assess the total absorption rates and capacities. Steric hindrance effect was noticed when side chain with alkyl group was present at the α-carbon to the amine group in the absorbent structure. An increase in the number of amine groups in absorbent structure, results in a higher capacity of upto 3.03 moles CO2/moles amine. Aromatic amines substituted with alkyl groups at the 2nd and 5th position show an increase in both absorption rate and capacity. © 2008 The Institution of Chemical Engineers
Towards a high-resolution 3D-analysis of sand-bank architecture on the Belgian Continental Shelf (RESOURCE-3D): Final report
Revealing the internal structure of sand banks by means of high-resolution seismic (acoustic) methods remains one of the classic methodological challenges in shallow marine geophysical prospection. This is mostly due to the strong heterogeneity of the sand-bank body in combination with complex sea-floor morphology. This study has focussed on the optimisation of a methodological-technological approach through a comparison of various state-of-the-art high-resolution seismic source/receiver configurations for the investigation of the internal architecture of sand banks. On the basis of a dense network of seismic profiles, the 3D architecture of a test site on the Belgian Continental Shelf was studied in detail. Digital acquisition of the data enabled postacquisition processing and data enhancement. Specialised software was used to identify, trace and map the structuring sediment bodies. To translate the “acoustic information” in a most unbiased way, in terms of its lithological and sedimentological nature, UGent-RCMG’s knowledge database and available background information on the Quaternary geology of the Belgian part of the North Sea has been used intensively. Finally, the interpreted seismic data were integrated with other datasets, such as multibeam bathymetry. This enabled a highresolution 3D quantitative analysis and representation of the sand-bank architecture and its economical potential. After comparison of the acquired test data sets, a set of recommendations is formulated regarding the most optimal strategy for future 4D prospecting of marine aggregates on the Belgian Continental Shelf
- …
