11 research outputs found

    Mortality Risk of Hypnotics: Strengths and Limits of Evidence

    Full text link
    Sleeping pills, more formally defined as hypnotics, are sedatives used to induce and maintain sleep. In a review of publications for the past 30 years, descriptive epidemiologic studies were identified that examined the mortality risk of hypnotics and related sedative-anxiolytics. Of the 34 studies estimating risk ratios, odds ratios, or hazard ratios, excess mortality associated with hypnotics was significant (p < 0.05) in 24 studies including all 14 of the largest, contrasted with no studies at all suggesting that hypnotics ever prolong life. The studies had many limitations: possibly tending to overestimate risk, such as possible confounding by indication with other risk factors; confusing hypnotics with drugs having other indications; possible genetic confounders; and too much heterogeneity of studies for meta-analyses. There were balancing limitations possibly tending towards underestimates of risk such as limited power, excessive follow-up intervals with possible follow-up mixing of participants taking hypnotics with controls, missing dosage data for most studies, and over-adjustment of confounders. Epidemiologic association in itself is not adequate proof of causality, but there is proof that hypnotics cause death in overdoses; there is thorough understanding of how hypnotics euthanize animals and execute humans; and there is proof that hypnotics cause potentially lethal morbidities such as depression, infection, poor driving, suppressed respiration, and possibly cancer. Combining these proofs with consistent evidence of association, the great weight of evidence is that hypnotics cause huge risks of decreasing a patient's duration of survival

    Psychiatry and end-of-life decisions

    No full text
    Geneeskunde en GesondheidswetenskappePsigiatriePlease help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]

    Melatonin and its agonists, circadian rhythms and psychiatry

    No full text
    No Abstract. African Journal of Psychiatry Vol. 12 (1) 2009: pp. 42-4

    The Dual Hypocretin Receptor Antagonist Almorexant is Permissive for Activation of Wake-Promoting Systems

    No full text
    The dual hypocretin receptor (HcrtR) antagonist almorexant (ALM) may promote sleep through selective disfacilitation of wake-promoting systems, whereas benzodiazepine receptor agonists (BzRAs) such as zolpidem (ZOL) induce sleep through general inhibition of neural activity. Previous studies have indicated that HcrtR antagonists cause less-functional impairment than BzRAs. To gain insight into the mechanisms underlying these differential profiles, we compared the effects of ALM and ZOL on functional activation of wake-promoting systems at doses equipotent for sleep induction. Sprague-Dawley rats, implanted for EEG/EMG recording, were orally administered vehicle (VEH), 100 mg/kg ALM, or 100 mg/kg ZOL during their active phase and either left undisturbed or kept awake for 90 min after which their brains were collected. ZOL-treated rats required more stimulation to maintain wakefulness than VEH- or ALM-treated rats. We measured Fos co-expression with markers for wake-promoting cell groups in the lateral hypothalamus (Hcrt), tuberomammillary nuclei (histamine; HA), basal forebrain (acetylcholine; ACh), dorsal raphe (serotonin; 5HT), and singly labeled Fos(+) cells in the locus coeruleus (LC). Following SD, Fos co-expression in Hcrt, HA, and ACh neurons (but not in 5HT neurons) was consistently elevated in VEH- and ALM-treated rats, whereas Fos expression in these neuronal groups was unaffected by SD in ZOL-treated rats. Surprisingly, Fos expression in the LC was elevated in ZOL- but not in VEH- or ALM-treated SD animals. These results indicate that Hcrt signaling is unnecessary for the activation of Hcrt, HA, or ACh wake-active neurons, which may underlie the milder cognitive impairment produced by HcrtR antagonists compared to ZOL

    Microbiome and Diseases: Pathogen Infection

    No full text

    Biochemical Effects of Drugs Acting on the Central Nervous System

    No full text
    corecore